FOR MORE EXCLUSIVE

 (Civil, Mechanical, EEE, ECE)

 (Civil, Mechanical, EEE, ECE)

 ENGINEERING \& GENERAL STUDIES

 ENGINEERING \& GENERAL STUDIES}
(Competitive Exams)

TEXT BOOKS, IES GATE PSU's TANCET 8 GOVT EXAMS NOTES \& ANNA UNVVERSITY STUDY MATERIALS

VISIT
wwW.EasyEngineering•net
AN EXCLUSIVE WEBSITE FOR ENGINEERING STUDENTS \& GRADUATES

**Note: Other Websites/ Blogs Owners Please do not Copy (or) Republish this Materials without Legal Permission of the Publishers.
**Disclimers : EasyEngineering not the original publisher of this Book/Material on net. This e-book/Material has been collected from other sources of net.

Section-I: General Ability

1. "His face \qquad with joy when the solution of the puzzle was \qquad to him."
The words that best fill the blanks in the above sentence are
(A) Shone, shown
(B) shone, shone
(C) shown, shone
(D) shown, shown

Key: (A)
2. "Although it does contain some pioneering ideas, one would hardly characterize the work as
\qquad ."
The words that best fill the blanks in the above sentence is
(A) innovative
(B) simple
(C) dull
(D) boring

Key: (B)
3. $\underbrace{a+a+a+\ldots .+a}_{n \text { times }}=a^{2} b$ and $\underbrace{b+b+b+\ldots .+b}_{m \text { times }}=a^{2}$, where a, b, n and m are natural numbers.

What is the value of
$(\underbrace{\mathrm{m}+\mathrm{m}+\mathrm{m}+\ldots .+\mathrm{m}}_{\mathrm{n} \text { times }})(\underbrace{\mathrm{n}+\mathrm{n}+\mathrm{n}+\ldots .+\mathrm{n}}_{\mathrm{m} \text { times }})$?
(A) $2 a^{2} b^{2}$
(B) $a^{4} b^{4}$
(C) $a b(a+b)$
(D) $a^{2}+b^{2}$

Key: (B)
Exp: Given

$$
\begin{aligned}
& =(\mathrm{mn})^{2} \\
& =\left(\mathrm{a}^{2} \mathrm{~b}^{2}\right)^{2}(\because \operatorname{from}(1) \&(2)) \\
& =\mathrm{a}^{4} \mathrm{~b}^{4}
\end{aligned}
$$

4. A three-member committee to be formed from a group of 9 people. How many such distinct committees can be formed?
(A) 27
(B) 72
(C) 81
(D) 84

Key: (D)
Exp: $\quad 9 C_{3}=\frac{9!}{3!(9-3)!}=\frac{9 \times 8 \times 7}{6}=84$
5. For a non-negative integers, a, b, c, what would be the value of $a+b+c$ if $\log \mathrm{a}+\log \mathrm{b}+\log \mathrm{c}=0$?
(A) 3
(B) 1
(C) 0
(D) -1

Key: (A)
Exp: $\quad \log \mathrm{a}+\log \mathrm{b}+\log \mathrm{c}=0$
$\Rightarrow \log \mathrm{abc}=0$
$\Rightarrow \mathrm{abc}=1$
$\Rightarrow \mathrm{a}=\mathrm{b}=\mathrm{c}=1$
$\mathrm{a}+\mathrm{b}+\mathrm{c}=3$
6. A faulty wall clock is known to gain 15 minutes every 24 hours. It is synchronized to the correct time at 9 AM on $11^{\text {th }}$ July. What will be the correct time to the nearest minute when the clock shows 2 PM on $15^{\text {th }}$ July of the same year?
(A) $12: 45 \mathrm{PM}$
(B) $12: 58 \mathrm{PM}$
(C) 1:00PM
(D) 2:00PM

Key: (B)
Exp: Clock is gaining 15 min. in every 24 hours
\Rightarrow Gaining per hour $=\frac{15}{24}$ minutes
No. of hours from $11^{\text {th }}$ July 9 am to $15^{\text {th }}$ July $2 \mathrm{pm}=101$
Total time gain $=101 \times \frac{15}{24} \simeq 63 \mathrm{~min}$.
\therefore correct time $=2 \mathrm{pm}-63 \mathrm{~min} \simeq 12.58 \mathrm{pm}$
7. The annual average rainfall in a tropical city is 1000 mm . On a particular rainy day (24-hour period), the cumulative rainfall experienced by the city is shown in the graph. Over the $24-$ hour period, 50% of the rainfall falling on a rooftop, which had an obstruction free area of $50 \mathrm{~m}^{2}$, was harvested into a tank. What is the total volume of water collected in the tank in liters?
(A) 25,000
(B) 18,750
(C) 7,500
(D) 3,125

Key: (C)
Exp: Cumulative rain fall $=300 \mathrm{~mm}=0.3 \mathrm{~m}$
50% of rain fall $=\frac{0.3}{2}=0.15 \mathrm{~m}$
Total volume of water collected in tank $=50 \times 0.15$

$$
=7.5 \mathrm{~m}^{3}=7500 \text { litre }
$$

8. Each of the letters in the figure below represents a unique integer from 1 to 9 . The letters are positioned in the figure such that each of $(\mathrm{A}+\mathrm{B}+\mathrm{C}),(\mathrm{C}+\mathrm{D}+\mathrm{E}),(\mathrm{E}+\mathrm{F}+\mathrm{G})$ and $(\mathrm{G}+\mathrm{H}+\mathrm{K})$ is equal to 13 . Which integer does E represent?

(A) 1
(B) 4
(C) 6
(D) 7

Key: (B)
Exp: According to the question
$\mathrm{A}+\mathrm{B}+\mathrm{C}=\mathrm{C}+\mathrm{D}+\mathrm{E}=\mathrm{E}+\mathrm{F}+\mathrm{G}=\mathrm{G}+\mathrm{H}+\mathrm{K}=13$
Adding all $\Rightarrow \mathrm{A}+\mathrm{B}+2 \mathrm{C}+\mathrm{D}+2 \mathrm{E}+\mathrm{F}+2 \mathrm{G}+\mathrm{H}+\mathrm{K}=52$.
\&
$\mathrm{A}+\mathrm{B}+\mathrm{C}+\mathrm{D}+\mathrm{E}+\mathrm{F}+\mathrm{G}+\mathrm{H}+\mathrm{K}=45$.
$(\because$ sum of no's from 1 to 9$)$
(1) $-(2) \Rightarrow \mathrm{C}+\mathrm{E}+\mathrm{G}=7$.
and also $\mathrm{C}+\mathrm{D}+\mathrm{E}=13$
(4) $-(3) \Rightarrow \mathrm{D}-\mathrm{G}=6$
$\mathrm{C}+\mathrm{D}+\mathrm{E}=13$
$\frac{-E+F+G=13}{(C-F)+(D-G)=0}$
$\Rightarrow(\mathrm{D}-\mathrm{G})=(\mathrm{F}-\mathrm{C})$
$\Rightarrow(\mathrm{F}-\mathrm{C})=6 \quad(\because \mathrm{D}-\mathrm{G}=6)$
Possible differences for getting ' 6 ' are $9-3=6$

$$
\begin{aligned}
& 7-1=6 \\
& 8-2=6
\end{aligned}
$$

But suitable differences for (D-G) \& (F-C) are 8-2 \& 7-1
\therefore structure of numbers satisfying given conditions is

$$
\Rightarrow \mathrm{E}=4
$$

[^0]9. In manufacturing industries, loss is usually taken to be proportional to the square of the deviation from a target. If the loss is Rs. 4900 for a deviation of 7 Units, what would be the loss in Rupees for a deviation of 4 units from the target?
(A) 400
(B) 1200
(C) 1600
(D) 2800

Key: (C)
Exp: Given Loss $\alpha(\text { Deviation })^{2}$
\Rightarrow Loss $=\mathrm{K}(\text { Deviation })^{2}$ where K is a proportionality constant
Given loss $=4900$, Deviation $=7$

$$
\begin{aligned}
& \Rightarrow 4900=\mathrm{K}(7)^{2} \\
& \Rightarrow \mathrm{~K}=100
\end{aligned}
$$

For a deviation of 4 units, Loss $=100(4)^{2}$

$$
=1600
$$

10. Given that $\frac{\log P}{y-z}=\frac{\log Q}{z-x}=\frac{\log R}{x-y}=10$ for $x \neq y \neq z$, what is the value of the product $P Q R$?
(A) 0
(B) 1
(C) xyz
(D) $10^{x y z}$

Key: (B)
Exp: $\quad \log P=10(y-z)$
$\log \mathrm{Q}=10(\mathrm{z}-\mathrm{x})$
$\log \mathrm{R}=10(\mathrm{x}-\mathrm{y})$
$\Rightarrow \log \mathrm{P}+\log \mathrm{Q}+\log \mathrm{R}=10(\mathrm{y}-\mathrm{z}+\mathrm{z}-\mathrm{x}+\mathrm{x}-\mathrm{y})$
$\Rightarrow \log \mathrm{PQR}=0$
$\Rightarrow \mathrm{PQR}=1$

Section-II: Civil Engineering

1. The clay mineral, whose structural units are held together by potassium bond is
(A) Halloysite
(B) Illite
(C) Kaolinite
(D) Smectite

Key: (B)
2. As per IS 10500:2012, for drinking water in the absence of alternate source of water, the permissible limits for chloride and sulphate, in mg / L, respectively are
(A) 250 and 200
(B) 1000 and 400
(C) 200 and 250
(D) 500 and 1000

Key: (B)
Exp: Acceptable limits for Drinking water, as per IS 10500:2012
Chlorides - $250 \mathrm{mg} / \mathrm{l}$
Sulphates - 200 mg/l
But in the absence of alternate source of water, the permissible limits are extended -
Chlorides - $1000 \mathrm{mg} / \mathrm{l}$
Sulphates - $400 \mathrm{mg} / \mathrm{l}$
3. Dupuit's assumptions are valid for
(A) artesian aquifer
(B) confined aquifer
(C) leaky aquifer
(D) unconfined aquifer

Key: (D)
4. The graph of a function $f(x)$ is shown in the figure.

For $f(x)$ to be a valid probability density function, the value of h is
(A) $1 / 3$
(B) $2 / 3$
(C) 1
(D) 3

Key: (A)
Exp: \quad Since $f(x)$ is a valid probability density function

$$
\begin{aligned}
& \Rightarrow \int_{0}^{1} \mathrm{f}(\mathrm{x}) \mathrm{dx}+\int_{1}^{2} \mathrm{f}(\mathrm{x}) \mathrm{dx}+\int_{2}^{3} \mathrm{f}(\mathrm{x}) \mathrm{dx}=1 \\
& \Rightarrow \int_{0}^{1} \mathrm{hxdx}+\int_{1}^{2} 2 \mathrm{~h}(\mathrm{x}-1) \mathrm{dx}-\int_{2}^{3} 3 \mathrm{~h}(\mathrm{x}-2) \mathrm{dx}=1 \\
& \left.\Rightarrow \mathrm{~h} \frac{\mathrm{x}^{2}}{2}\right|_{0} ^{1}+\left.2 \mathrm{~h}\left(\frac{\mathrm{x}^{2}}{2}-\mathrm{x}\right)\right|_{1} ^{2}+\left.3 \mathrm{~h}\left(\frac{\mathrm{x}^{2}}{2}-2 \mathrm{x}\right)\right|_{2} ^{3}=1 \Rightarrow 3 \mathrm{~h}=1 \Rightarrow \mathrm{~h}=\frac{1}{3}
\end{aligned}
$$

5. The quadratic equation $2 x^{2}-3 x+3=0$ is to be solved numerically starting with an initial guess as $x_{0}=2$. The new estimate of x after the first iteration using Newton-Raphson method is \qquad
Key: (1)
Exp: $\quad f(x)=2 x^{2}-3 x+3$
$\Rightarrow \mathrm{f}^{1}(\mathrm{x})=4 \mathrm{x}-3$
Given $\mathrm{x}=2$
New estimate of ' x ' after $1^{\text {st }}$ iteration,

$$
\begin{aligned}
\mathrm{x}_{1} & =\mathrm{x}_{0}-\frac{\mathrm{f}\left(\mathrm{x}_{0}\right)}{\mathrm{f}^{1}\left(\mathrm{x}_{0}\right)} \\
& =2-\frac{\mathrm{f}(2)}{\mathrm{f}^{1}(2)}=2-\frac{5}{5}=1
\end{aligned}
$$

6. A probability distribution with right skew is shown in the figure.

The correct statement for the probability distribution is
(A) Mean is equal to mode
(B) Mean is greater than median but less than mode
(C) Mean is greater than median and mode
(D) Mode is greater than median

Key: (C)
Exp: For right skew
Mode < media < mean
\&
For left skew
Mean < Median < Mode
7. The solution of the equation $x \frac{d y}{d x}+y=0$ passing through the point $(1,1)$ is
(A) x
(B) x^{2}
(C) x^{-1}
(D) x^{-2}

Key: (C)
Exp: $\frac{x d y}{d x}+y=0$
$\Rightarrow \frac{x d y}{d x}=-y \Rightarrow \frac{1}{y} d y=\frac{-1}{x} d x$

Integrating

$$
\begin{aligned}
& \Rightarrow \int \frac{1}{y} d y=-\int \frac{1}{x} d x \\
& \begin{aligned}
\Rightarrow \log _{e} y & =-\log _{e} x+\log _{e} c \\
& =\log _{e}(c / x)
\end{aligned} \\
& \Rightarrow y=\frac{c}{x}
\end{aligned} \begin{aligned}
& (1,1) \Rightarrow c=1
\end{aligned} \begin{aligned}
& \therefore y=\frac{1}{x}=x^{-1}
\end{aligned}
$$

8. As per IS 456:2000, the minimum percentage of tension reinforcement (up to two decimal places) required in reinforced concrete beams of rectangular cross section (considering effective depth in the calculation of area) using Fe500 grade steel is \qquad
Key: (0.17)
Exp: Min. percentage of tension reinforcement

$$
\begin{aligned}
& \frac{A_{s}}{b d}=\frac{0.85}{f_{y}} \\
& \frac{A_{s}}{b d}=\frac{0.85}{f_{y}} \\
& =\frac{0.85}{500} \times 100=0.17 \%
\end{aligned}
$$

9. A vertical load of 10 kN acts on a hinge located at a distance of $\mathrm{L} / 4$ from the roller support Q of a beam of length L (see figure).

The vertical reaction at support Q is
(A) 0.0 kN
(B) 2.5 kN
(C) 7.5 kN
(D) 10.0 kN

Key: (A)
Exp: Let R_{Q} be the support reaction at Q .
For equilibrium, $\Sigma \mathrm{M}_{\mathrm{c}}=0$

$$
\begin{aligned}
& R_{Q} \times \frac{1}{4}=0 \\
& \Rightarrow R_{Q}=0
\end{aligned}
$$

10. Probability (up to one decimal place) of consecutively picking 3 red balls without replacement from a box containing 5 red balls and 1 white ball is \qquad
Key: (0.5)
Exp: 5 Red
1 white

$$
\begin{aligned}
\text { Required probability } & =\frac{5}{6} \times \frac{4}{5} \times \frac{3}{4} \\
& =\frac{1}{2}=0.5
\end{aligned}
$$

11. The intensity of irrigation for the Kharif season is 50% for an irrigation project with culturable command area of 50,000 hectares. The duty for the Kharif season is 1000 hectare/cumec. Assuming transmission loss of 10%, the required discharge (in cumec, up to two decimal places) at the head of the canal is \qquad _.
Key: (27.78 cumecs)
Exp: \quad Area $=50,000$ hectares
Duty $=1000$ hectare $/$ cumec .
$\operatorname{Disch} \operatorname{arge}(Q)=\frac{\text { Area }}{\text { Duty }}=\frac{50 \% \text { of } 50000}{90 \% \text { of } 1000}=\frac{25000}{900}=27.78$ cumecs.
12. The contact pressure and settlement distribution for a footing are shown in the figure.

The figure corresponds to a

(A) rigid footing on granular soil
(B) flexible footing on granular soil
(C) flexible footing on saturated clay
(D) rigid footing on cohesive soil

Key: (A)
13. A fillet weld is simultaneously subjected to factored normal and shear stresses of 120 MPa and 50 MPa , respectively. As per IS $800: 2007$, the equivalent stress (in MPa , up to two decimal places) is \qquad
Key: (147.99)
Exp: Equivalent shear stress as per IS:800-2007 is given by
$f_{e}=\sqrt{f_{a}^{2}+3 q^{2}}$
Here, $\mathrm{f}_{\mathrm{a}}=120 \mathrm{MPa} \& \mathrm{q}=50 \mathrm{MPa}$
$\therefore \mathrm{f}_{\mathrm{e}}=\sqrt{(120)^{2}+3(50)^{2}}=147.99 \mathrm{MPa}$
14. As per IRC : 37-2012, in order to control subgrade rutting in flexible pavements, the parameter to be considered is
(A) horizontal tensile strain at the bottom of bituminous layer
(B) vertical compressive strain on top of subgrade
(C) vertical compressive stress on top of granular layer
(D) vertical deflection at the surface of the pavement

Key: (B)
15. The setting time of cement is determined using
(A) Le chatelier apparatus
(B) Briquette testing apparatus
(C) Vicat apparatus
(D) Casagrande's apparatus

Key: (C)
16. All the members of the planar truss (see figure), have the same properties in terms of area of cross section (A) and modulus of elasticity (E).

For the loads shown on the truss, the statement that correctly represents the nature of forces in the members of the truss is:
(A) There are 3 members in tension, and 2 members in compression
(B) There are 2 members in tension, 2 members in compression, and 1 zero-force member
(C) There are 2 members in tension, 1 member in compression, and 2 zero-force members
(D) There are 2 members in tension, and 3 zero-force members

Key: (D)
Exp:

$$
\begin{aligned}
& \text { Joint A } \\
& \mathrm{P}=\mathrm{P}+\mathrm{F}_{\mathrm{AB}} \cdot \cos 45 \\
& \mathrm{~F}_{\mathrm{AB}}=0 \\
& \text { Zero force members }=\mathrm{AD}, \mathrm{AB}, \mathrm{BC} \\
& \mathrm{~F}_{\mathrm{AD}}+\mathrm{F}_{\mathrm{AB}} \sin 45=0 \\
& \mathrm{~F}_{\mathrm{AD}}=0
\end{aligned}
$$

17. A reinforced concrete slab with effective depth of 80 mm is simply supported at two opposite ends on 230 mm thick masonry walls. The centre to centre distance between the walls is 3.3 m . As per IS 456:2000. The effective span of the slab (in m , up to two decimal places) is \qquad
Key: (3.15)
Exp: Effective span: taken as lesser of two
(a) clear span + effective depth $=(3.3-0.23)+0.08=3.15$
(b) C / C distance between the walls $=3.3 \mathrm{~m}$
\therefore effective span $=3.15 \mathrm{~m}$
18. The initial concavity in the load penetration curve of a CBR test is NOT due to
(A) uneven top surface
(B) high impact at start of loading
(C) inclined penetration plunger
(D) soft top layer of soaked soil

Key: (B)
Exp: Load penetration curve of CBR test is concave due to
i. Top layer of soaked soil is too soft (or) slushy after soaking in water
ii. The top surface of the specimen is not even
iii. The penetration plunger of the loading machine is not vertical resulting in the bottom surface of plunger not being horizontal and not fully in contact with top surface of the specimen.
19. Peak Hour factor (PHF) is used to represent the proportion of peak sub-hourly traffic flow within the peak hour. If 15 -minute sub-hours are considered, the theoretically possible range of PHF will be
(A) 0 to 1.0
(B) 0.25 to 0.75
(C) 0.25 to 1.0
(D) 0.5 to 1.0

Key: (C)
Exp: Peak hour factor (PHF) is the hourly volume during maximum volume hour of day divided by the peak 15-minute flow rate within a peak hour.
The possible values of PHF can range b/w 0.25 and 1.00
20. In the figures, Group I represents the atmospheric temperature profiles ($\mathrm{P}, \mathrm{Q}, \mathrm{R}$ and S) and Group II represents dispersion of pollutants from a smoke stack (1,2,3 and 4). In the figures of

[^1]Group I, the dashed line represents the dry adiabatic lapse rate, whereas the horizontal axis represents temperature and the vertical axis represents the altitude.

Adiabatic

Inversion

Inversion over Superadiabatic

Looping plume

Coning plume

Fanning plume

Fumigation
(B) P-1, Q-2, R-4, S-3
(D) P-3, Q-1, R-2, S-4

Key: (A)
21. A flownet below a dam consists of 24 equipotential drops and 7 flow channels. The difference between the upstream and downstream water levels is 6 m . The length of the flow line adjacent to the toe of the dam at exit is 1 m . The specific gravity and void ratio of the soil below the dam are 2.70 and 0.70 , respectively. The factor of safety against piping is
(A) 1.67
(B) 2.5
(C) 3.4
(D) 4

Key: (D)
Exp: (FOS $)_{\text {piping }}=\frac{i_{\text {cr }}}{i_{\text {ex }}}$
$\mathrm{i}_{\mathrm{cr}}=\frac{\mathrm{G}-1}{1+\mathrm{e}}=\frac{2.70-1}{1+0.7}=\frac{1.7}{1.7}=1$
$\Delta \mathrm{H}=\frac{\mathrm{H}}{\mathrm{N}_{\mathrm{d}}}=\frac{6}{24}$
$\mathrm{i}_{\text {exit }}=\frac{\Delta \mathrm{H}}{\Delta \mathrm{L}}=\frac{6 / 24}{1}=\frac{1}{4}$
$(\mathrm{FOS})_{\text {piping }}=\frac{1}{1 / 4}=4$
22. A structural member subjected to compression, has both translation and rotation restrained at one end, while only translation is restrained at the other end. As per IS 456:2000, the effective length factor recommended for design is
(A) 0.50
(B) 0.65
(C) 0.70
(D) 0.80

Key: (D)
23. For a given discharge in an open channel, there are two depths which have the same specific energy. These two depths are known as
(A) alternate depths
(B) critical depths
(C) normal depths
(D) sequent depths

Key: (A)
24. A culvert is designed for a flood frequency of 100 years and a useful life of 20 years. The risk involved in the design of the culvert (in percentage, up to two decimal places) is \qquad
Key: (18.2)
Exp: \quad Risk $=1-q^{n}$
$=1-\left(1-\frac{1}{\mathrm{~T}}\right)^{\mathrm{n}}$
$=1-\left(1-\frac{1}{100}\right)^{20}$
$=0.182$
$=18.2 \%$
25. Which one of the following statements is NOT correct?
(A) When the water content of soil lies between its liquid limit and plastic limit, the soil is said to be in plastic state.
(B) Boussinesq's theory is used for the analysis of stratified soil.
(C) The inclination of stable slope in cohesive soil can be greater than its angle of internal friction.
(D) For saturated dense fine sand, after applying overburden correction, if the standard penetration Test value exceeds 15 , dilatancy correction is to be applied.
Key: (B)
26. Two rigid bodies of mass 5 kg and 4 kg are at rest on a frictionless surface until acted upon by a force of 36 N as shown in the figure. The contact force generated between the two bodies is
© All rights reserved by Thinkcell Learning Solutions Pvt. Ltd. No part of this booklet may be reproduced or utilized in any form without the written permission

(A) 4.0 N
(B) 7.2 N
(C) 9.0 N
(D) 16.0 N

Key: (D)
Exp:

$36 \mathrm{~N}=9 \times \mathrm{a} \Rightarrow \mathrm{a}=\frac{36}{9}=4 \mathrm{~m} / \mathrm{s}^{2}$
Force on $1^{\text {st }}$ blcok $=\mathrm{F}=\mathrm{ma}=5 \times 4=20 \mathrm{~N}$
FBD

$36-F=20$
$\mathrm{F}=36-20=16 \mathrm{~N}$
27. A coal containing 2% sulphur is burned completely to ash in a brick kiln at a rate of 30 $\mathrm{kg} / \mathrm{min}$. The sulphur content in the ash was found to be 6% of the initial amount of sulphur present in the coal fed to the brick kiln. The molecular weights of S, H and O are 32,1 and $16 \mathrm{~g} / \mathrm{mole}$, respectively, The annual rate of sulphur dioxide $\left(\mathrm{SO}_{2}\right)$ emission from the kiln (in tonnes/year. up to two decimal places) is \qquad
Key: (592.87)
Exp: Total amount of coal $=30 \times 24 \times 60 \times 365=15768000 \mathrm{~kg}$ in a year
Sulphur $=2 \%$ of coal $=\frac{2}{100} \times 15768000=315360 \mathrm{~kg}$
sulphur content $=6 \%$ of $315360=18921.6 \mathrm{~kg}$ in ash
remaining sulphur $=0.94 \times 315360=296438.4 \mathrm{~kg}$
$\mathrm{S}+\mathrm{O}_{2} \rightarrow \mathrm{SO}_{2}$
$32 \mathrm{gm} \rightarrow 64 \mathrm{gm}$
$294638.4 \rightarrow$?

$$
\begin{aligned}
& =\frac{64}{32} \times 296438.4 \\
& =592876.8 \mathrm{~kg} \\
& =592.87 \text { tonnes }
\end{aligned}
$$

28. The compression curve (void ratio, e vs. Effective stress, $\sigma_{v}^{\prime}{ }_{v}$) for a certain clayey soil is a straight line in a semi-logarithmic plot and it passes through the points $\left(\mathrm{e}=1.2 ; \sigma_{\mathrm{v}}^{\prime}=50 \mathrm{kPa}\right)$

CE-GATE 2018
and ($\mathrm{e}=0.6 ; \sigma^{\prime}{ }_{\mathrm{v}}=800 \mathrm{kPa}$). The compression index (up to two decimal places) of the soil is \qquad
Key: (0.498)
Exp: Compression index $\left(\mathrm{C}_{\mathrm{c}}\right)=\frac{\Delta \mathrm{e}}{\log \left(\frac{\bar{\sigma}_{2}}{\sigma_{1}}\right)}$

$$
=\frac{1.2-0.6}{\log \left(\frac{800}{50}\right)}=\frac{0.6}{\log 16}=0.498
$$

29. Three soil specimens (Soil 1, Soil 2 and Soil 3), each 150 mm long and 100 mm diameter, are placed in series in a constant head flow set up as shown in the figure. Suitable screens are provided at the boundaries of the specimens to keep them intact. The values of coefficient of permeability of Soil 1, Soil 2 and Soil 3 are $0.01,0.003$ and $0.03 \mathrm{~cm} / \mathrm{s}$, respectively.

The value of h in the set up is
(A) 0 mm
(B) 40 mm
(C) 255 mm
(D) 560 mm

Key (B)
Exp: Soils are placed in series

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{eq}}=\frac{\mathrm{H}_{1}+\mathrm{H}_{2}+\mathrm{H}_{3}}{\frac{\mathrm{H}_{1}}{\mathrm{~K}_{1}}+\frac{\mathrm{H}_{2}}{\mathrm{~K}_{2}}+\frac{\mathrm{H}_{3}}{\mathrm{~K}_{3}}}=\frac{150+150+150}{\frac{150}{0.1}+\frac{150}{0.03}+\frac{150}{0.3} \mathrm{~mm} / \mathrm{sec} .} \\
& =\frac{450}{150\left(\frac{1}{0.1}+\frac{1}{0.03}+\frac{1}{0.3}\right)}=0.0643 \mathrm{~mm} / \mathrm{sec} \\
& \mathrm{~K}_{\mathrm{eq}} \mathrm{iA}=\mathrm{K}_{3} \cdot \mathrm{i}_{3} \cdot \mathrm{~A} \\
& \mathrm{~K}_{\mathrm{eq}} \frac{\mathrm{~h}}{\mathrm{~L}}=\mathrm{K}_{3} \frac{\mathrm{~h}_{3}}{\mathrm{~L}_{3}} \\
& 0.0643 \mathrm{~mm} / \mathrm{sec} \times \frac{560 \mathrm{~mm}}{450 \mathrm{~mm}}=0.3 \mathrm{~mm} / \mathrm{sec} \times \frac{\mathrm{h}_{3}}{150} \mathrm{~mm} \\
& \mathrm{~h}_{3}=\frac{0.0643 \times 560 \times 150}{450 \times 0.3}=40.008 \mathrm{~mm}
\end{aligned}
$$

30. A 3 m high vertical earth retaining wall retains a dry granular backfill with angle of internal friction of 30° and unit weight of $20 \mathrm{kN} / \mathrm{m}^{3}$. If the wall is prevented from yielding (no movement), the total horizontal thrust (in kN per unit length) on the wall is
(A) 0
(B) 30
(C) 45
(D) 270

Key: (C)
Exp:

Wall is prevented from yielding (no movement) i.e wall is at rest
$\mathrm{K}_{0}=1-\sin \phi=1-\sin 30=0.5$
$\mathrm{F}_{\mathrm{H}}=\frac{1}{2} \times 3 \times 30=3 \times 15=45 \mathrm{kN} /$ mlength.
31. A 6 m long simply supported beam is prestressed as shown in the figure.

The beam carries a uniformly distributed load of $6 \mathrm{kN} / \mathrm{m}$ over its entire span. If the effective flexural rigidity $\mathrm{EI}=2 \times 10^{4} \mathrm{kNm}^{2}$ and the effective prestressing force is 200 kN , the net increase in length of the prestressing cable (in mm, up to two decimal places) is \qquad
Key: (0.12)
Exp: Given,
span, $\ell=6 \mathrm{~m}$ w, udl $=6 \mathrm{KN} / \mathrm{m}$. and e, eccentricity $=50 \mathrm{~mm}$
Prestressing force $\mathbf{P}=\mathbf{2 0 0 K N}$
(a) slope of the beam due to p - force $\theta_{1}=\frac{\mathrm{Pe} \ell}{8 \mathrm{EI}}$

$$
=\frac{200 \times 10^{3} \times 50 \times 6000}{2 \times 2 \times 10^{13}}=1.5 \times 10^{-3}(\text { upward })
$$

(b) slope of the beam due to UDL

$$
\theta_{2}=\frac{\mathrm{w} \ell^{3}}{24 \mathrm{EI}}=\frac{6 \times(6000)^{3}}{24 \times 2 \times 10^{13}}=2.7 \times 10^{-3}
$$

(c) Net slope of beam

$$
\begin{aligned}
\theta & =\theta_{1}+\theta_{2} \\
& =(-) 1.5 \times 10^{-3}+2.7 \times 10^{-3} \\
& =1.2 \times 10^{-3}=2 \mathrm{e} \theta=2 \times 50 \times 1.2 \times 10^{-3}=0.12 \mathrm{~mm}
\end{aligned}
$$

32. A three fluid system (immiscible) is connected to a vacuum pump. The specific gravity values of the fluids $\left(\mathrm{S}_{1}, \mathrm{~S}_{2}\right)$ are given in the figure.

Unit weight of water, $\gamma_{w}=9.81 \mathrm{kN} / \mathrm{m}^{3}$
Atmospheric Pr essure, $\mathrm{p}_{\text {atm }}=95.43 \mathrm{kPa}$
The gauge pressure value (in $\mathrm{kN} / \mathrm{m}^{2}$. Up to two decimal places) of p_{1} is \qquad
Key: (-8.73)
Exp: Balancing the pressure force at datum level below fluid II:
$\mathrm{P}_{\mathrm{A}}=\mathrm{P}_{1}+\mathrm{S}_{1} \times \underset{(\text { (fluid })}{\rho_{\mathrm{w}}} \times \mathrm{g} \times 0.5+\mathrm{S}_{2} \times \rho_{\mathrm{w}} \times \mathrm{g} \times 1$
$1000 \times 9.81 \times 0.5=\mathrm{P}_{1}+0.88 \times 1000 \times 9.81 \times 0.5+0.95 \times 9.81 \times 1 \times 1000$
$\Rightarrow P_{1}=-8.73 \mathrm{KN} / \mathrm{m}^{2}$
33. The value (up to two decimal places) of a line integral $\int \vec{F}(\vec{r})$.d \vec{r}, for $\vec{F}(\vec{r})=x^{2} \vec{i}+y^{2} \vec{j}$ along C which is a straight line joining $(0,0)$ to $(1,1)$ is \qquad
Key: (0.67)
Exp: $\quad \int_{C} \overline{\mathrm{~F}}(\overline{\mathrm{r}}) \cdot d \overline{\mathrm{r}}=\int_{\mathrm{C}} \mathrm{x}^{2} \mathrm{dx}+\mathrm{y}^{2} \mathrm{dy}$
straight line joining $(0,0)$ to $(1,1)$ is $y=x$

$$
\Rightarrow \mathrm{dy}=\mathrm{dx}
$$

$\therefore \int_{C} \mathrm{x}^{2} \mathrm{dx}+\mathrm{y}^{2} \mathrm{dy}=\int_{\mathrm{x}=0}^{1} \mathrm{x}^{2} \mathrm{dx}+\mathrm{x}^{2} \mathrm{dx}=\int_{\mathrm{x}=0}^{1} 2 \mathrm{x}^{2} \mathrm{dx}$

$$
=\left.2 \frac{x^{3}}{3}\right|_{0} ^{1}=\frac{2}{3} \simeq 0.67
$$

34. A singly reinforced rectangular concrete beam of width 300 mm and effective depth 400 mm is to be designed using M25 grad concrete and Fe500 grade reinforcing steel. For the beam to be under reinforced, the maximum number of 16 mm diameter reinforcing bars that can be provided is
(A) 3
(B) 4
(C) 5
(D) 6

Key: (C)
Exp: For Fe500
$\mathrm{x}_{\mathrm{u}, \text { max }}=0.46 \mathrm{~d}=0.46 \times 400=184 \mathrm{~mm}$

For under reinforced section $\mathrm{X}_{\mathrm{u}}<\mathrm{X}_{\mathrm{u}, \max }$
$\mathrm{C}=\mathrm{T}$
$0.36 \mathrm{f}_{\mathrm{ck}} \mathrm{b} \mathrm{x}_{\mathrm{u}}=0.87 \mathrm{f}_{\mathrm{y}} \mathrm{A}_{\mathrm{st}}$
$0.36 \times 25 \times 300 \times(184)=0.87 \times 500 \times \mathrm{n} \times \frac{\pi}{4} 16^{2}$
$\mathrm{n}=\frac{0.36 \times 25 \times 300 \times 184 \times 4}{0.87 \times 500 \times \pi \times 16^{2}}=5.68$

5.68 no.f bars will be used for balanced section for under reinforced section no.of bars should be less than that of balanced section and maximum value is 5 .
35. In a 5 m wide rectangular channel, the velocity u distribution in the vertical direction y is given by $u=1.25 y^{\frac{1}{6}}$. The distance y is measured from the channel bed. If the flow depth is 2 m , the discharge per unit width of the channel is
(A) $2.40 \mathrm{~m}^{3} / \mathrm{s} / \mathrm{m}$
(B) $2.80 \mathrm{~m}^{3} / \mathrm{s} / \mathrm{m}$
(C) $3.27 \mathrm{~m}^{3} / \mathrm{s} / \mathrm{m}$
(D) $12.02 \mathrm{~m}^{3} / \mathrm{s} / \mathrm{m}$

Key: (A)
$\operatorname{Exp}: \quad q=\int_{0} u d_{y}$
$=\int_{0}^{2} 1.25 y^{1 / 6} \mathrm{~d}_{\mathrm{y}}$
$=\left.1.25 \frac{\mathrm{y}^{7 / 6}}{7 / 6}\right|_{0} ^{2}=1.25 \cdot \frac{2^{7 / 6}}{7 / 6}$
$=2.40 \mathrm{~m}^{3} / \mathrm{s} / \mathrm{m}$ width
36. A prismatic beam P-Q-R of flexural rigidity $\mathrm{EI}=1 \times 10^{4} \mathrm{kNm}^{2}$ is subjected to a moment of 180 kNm at Q as shown in the figure.

The rotation at Q (in rad, up to two decimal places) is \qquad
Key: (0.01)
Exp:

Using slope deflection equation

CE-GATE 2018
$\mathrm{M}_{\mathrm{QP}}=\frac{2 \mathrm{EI}}{5}\left(2 \theta_{\mathrm{QP}}\right)$
$\mathrm{M}_{\mathrm{QR}}=\frac{2 \mathrm{EI}}{4}\left(2 \theta_{\mathrm{QR}}\right)$
using equilibrium;

$$
\begin{aligned}
& \because \mathrm{M}_{\mathrm{QP}}+\mathrm{M}_{\mathrm{QP}}=180 \\
& \Rightarrow \frac{2 \mathrm{EI}}{5} \times 2 \theta_{\mathrm{QP}}+\frac{4 \mathrm{EI} \theta_{\mathrm{QR}}}{4}=180 \\
& \text { or, } \\
& \text { or, } \\
& 0.8 \mathrm{EI}\left(\theta_{\mathrm{QP}}\right)+\mathrm{EI} \theta_{\mathrm{QR}}=180 \\
& \text { or, }
\end{aligned} \quad \theta_{\mathrm{Q}}=\frac{100}{\mathrm{EI}}=\frac{100}{1 \times 10^{4}}=180.01 \text { radian } .
$$

37. A 7.5 m wide two lane road on a plain terrain is to be laid along a horizontal curve of radius 510 m . For a design speed of 100 kmph , super elevation is provided as per IRC: 73-1980. Consider acceleration due to gravity as $9.81 \mathrm{~m} / \mathrm{s}^{2}$. The level difference between the inner and outer edges of the road (in m , up to three decimal places) is \qquad
Key: (0.525m)
Exp: $\quad B=7.5 \mathrm{~m}, \mathrm{R}=510 \mathrm{~m}$
Design speed, $\mathrm{V}=100 \mathrm{kmph}$
$\mathrm{g}=9.81 \mathrm{~m} / \mathrm{s}^{2}$
We know,
super elevation, $\mathrm{e}=\tan \theta=\sin \theta=\frac{\mathrm{E}}{\mathrm{B}}$
$\therefore \mathrm{E}=\mathrm{eB}$

For mixed traffic condition
$\mathrm{e}=\frac{\mathrm{V}^{2}}{225 \mathrm{R}}=\frac{(100)^{2}}{225 \times 510}=0.087>0.07$
\therefore restrict $\mathrm{e}=0.07$ for which $\mathrm{f}=\frac{\mathrm{V}^{2}}{127 \mathrm{R}}-0.07$

$$
=\frac{(100)^{2}}{127 \times 510}-0.07=0.084<0.15
$$

$\therefore \mathrm{E}=7.50 \times 0.070=0.525 \mathrm{~m}$
38. The Laplace transform $F(s)$ of the exponential function, $f(t)=e^{a t}$ when $t \geq 0$, where a is a constant and $(s-a)>0$, is
(A) $\frac{1}{\mathrm{~s}+\mathrm{a}}$
(B) $\frac{1}{\mathrm{~s}-\mathrm{a}}$
(C) $\frac{1}{a-s}$
(D) ∞

Key: (B)
Exp: $L\left[e^{\text {at }}\right]=\frac{1}{s-a}$
39. An aerial photograph of a terrain having an average elevation of 1400 m is taken at a scale of $1: 7500$. The focal length of the camera is 15 cm . The altitude of the flight above mean sea level (in m , up to one decimal place) is \qquad
Key: (2525.0)
Exp: Let altitude of the flight above MSL be H
$\mathrm{h}=1400 \mathrm{~m}$
$\mathrm{s}=\frac{1}{7500}$
$\Rightarrow \frac{1}{7500}=\frac{\mathrm{f}}{\mathrm{H}-\mathrm{h}}$
$\Rightarrow \mathrm{H}-1400=7500(0.15) \Rightarrow \mathrm{H}=2525 \mathrm{~m}$

40. Four bolts P, Q, R and S of equal diameter are used for a bracket subjected to a load of 130 kN as shown in the figure.

(A) 32.50 kN
(B) 69.32 kN
(C) 82.50 kN
(D) 119.32 kN

Key: (B)
Exp: Direct force, $\mathrm{F}_{1}=\frac{\mathrm{P}}{4}=\frac{130}{4}=32.5 \mathrm{kN}$
Force due to moment, $\mathrm{F}_{2}=\frac{\operatorname{Per}_{n}}{\Sigma \mathrm{r}^{2}}$
$\mathrm{r}_{\mathrm{n}}=\sqrt{(50)^{2}+(120)^{2}}=130 \mathrm{~mm}$
$\Sigma \mathrm{r}^{2}=4 \times(130)^{2}=520 \times 130=67600$
$\therefore \mathrm{F}_{2}=\frac{130 \times 0.20 \times 130 \times 1000}{67600}=50 \mathrm{kN}$
$\cos \theta=\frac{50}{\sqrt{(50)^{2}+(120)^{2}}}=\frac{50}{130}=0.385$
Resultant force, $\mathrm{F}_{\mathrm{n}}=\sqrt{(32.5)^{2}+(50)^{2}+2 \times 32.5 \times 50 \times 0.385}$
$\Rightarrow \mathrm{F}_{\mathrm{n}}=69.32 \mathrm{kN}$
41. An 8 m long simply supported elastic beam of rectangular cross section $(100 \mathrm{~mm} \times 200 \mathrm{~mm})$ is subjected to a uniformly distributed load of $10 \mathrm{kN} / \mathrm{m}$ over its entire span. The maximum principal stress (in MPa, up to two decimal places) at a point located at the extreme compression edge of a cross section and at 2 m from the support is \qquad
Key: (90.00)
Exp:

??
$\mathrm{M}_{\mathrm{x}}=\mathrm{V}_{\mathrm{A}} \times 2-10 \times 2 \times 1$
$=\frac{10 \times 8}{2} \times 2-20=60 \mathrm{KNm}$
$\therefore \sigma_{b}=\frac{M}{I} y_{\max }=\frac{60 \times 10^{6} \times 12}{(100)(200)^{3}} \times 100=90 \mathrm{~N} / \mathrm{mm}^{2}($ compressre $)$ atC.
τ at top compression edge $=0$

$\therefore \sigma_{1}=\frac{\sigma_{\mathrm{b}}}{2}+\sqrt{\left(\frac{\sigma_{\mathrm{b}}}{2}\right)^{2}}+\tau^{2}=\sigma_{\mathrm{b}}=90 \mathrm{~N} / \mathrm{mm}^{2}=90.00 \mathrm{MPa}$.
42. The space mean speed (kmph) and density (vehicles/km) of a traffic stream are linearly related. The free flow speed an jam density are 80 kmph and 100 vehicles $/ \mathrm{km}$ respectively. The traffic flow (in vehicles/h, up to one decimal place) corresponding to a speed of 40 kmph is
\qquad
Key: (2000)
Exp:

$\tan \theta=\frac{80-40}{\mathrm{k}}=\frac{80}{100}$
$\frac{40}{\mathrm{k}}=\frac{80}{100} \Rightarrow \mathrm{k}=\frac{4000}{80}=50 \mathrm{veh} / \mathrm{km}$
$\mathrm{q}=\mathrm{kv}=40 \times 50=2000 \mathrm{veh} / \mathrm{hr}$
43. A group of nine piles in a 3×3 square pattern is embedded in a soil strata comprising dense sand underlying recently filled clay layer, as shown in the figure. The perimeter of an individual pile is 126 cm . The size of pile group is $240 \mathrm{~cm} \times 240 \mathrm{~cm}$. The recently filled clay has undrained shear strength of 15 kPa and unit weight of $16 \mathrm{kN} / \mathrm{m}^{3}$.

The negative frictional load (in kN , up to two decimal places) acting on the pile group is
\qquad

Key: (472.32 kN)
Exp: Single action
$\mathrm{F}_{\mathrm{ng}}=\mathrm{nF}_{\mathrm{n}}=\mathrm{nCN}_{\mathrm{C}} \mathrm{p}_{\mathrm{s}} \mathrm{L}$
$=9 \times 15 \times 1.26 \times 2$
$=340.20 \mathrm{kN}$
Group pile action
$\mathrm{F}_{\mathrm{ng}}=\mathrm{c}_{\mathrm{u}} \mathrm{p}_{\mathrm{g}} \mathrm{L}+\gamma \mathrm{D}_{\mathrm{n}} \mathrm{A}_{\mathrm{g}}$
$=15 \times 4 \times 2.4 \times 2+16 \times 2 \times(2.4)^{2}=472.32 \mathrm{kN}$
\therefore Negative frictionalload $=472.32 \mathrm{kN}$
(whichever is greater)
44. A prismatic propped cantilever beam of span L and plastic moment capacity M_{p} is subjected to a concentrated load at its mid span. If the collapse load of the beam is $\alpha \frac{M_{p}}{L}$, the value of α is \qquad
Key: (6)
Exp: By upper bound theorem
$\mathrm{M}_{\mathrm{p}} \theta+\mathrm{M}_{\mathrm{p}} \theta+\mathrm{M}_{\mathrm{p}} \theta+0=\mathrm{w} \frac{\ell}{2} \theta$
$3 \mathrm{~m}_{\mathrm{p}} \theta=\frac{\mathrm{w} \ell}{2} \theta$
$\mathrm{w}=\frac{6 \mathrm{M}_{\mathrm{p}}}{\ell} \Rightarrow \alpha=6$

45. The matrix $\left[\begin{array}{ll}2 & -4 \\ 4 & -2\end{array}\right]$ has
(A) real eigenvalues and eigenvectors
(B) real eigenvalues but complex eigenvectors
(C) complex eigenvalues but real eigen vectors
(D) complex eigenvalues and eigen vectors

Key: (D)
Exp: Let $A=\left[\begin{array}{ll}2 & -4 \\ 4 & -2\end{array}\right]$
Characteristic equation of A is $\lambda^{2}-($ trace of $A) \lambda+|A|=0$

$$
\begin{aligned}
& \Rightarrow \lambda^{2}-0+12=0 \\
& \Rightarrow \lambda= \pm 2 \sqrt{3} \mathrm{i}
\end{aligned}
$$

and corresponding eigen vectors are

$$
\left[\begin{array}{c}
\frac{1}{2}+\frac{\sqrt{3}}{2} \mathrm{i} \\
1
\end{array}\right]\left[\begin{array}{c}
\frac{1}{2}-\frac{\sqrt{3}}{2} \mathrm{i} \\
1
\end{array}\right]
$$

46. A flocculation tank contains $1800 \mathrm{~m}^{3}$ of water, which is mixed using paddles at an average velocity gradient G of $100 / \mathrm{s}$. The water temperature and the corresponding dynamic viscosity are $30^{\circ} \mathrm{C}$ and $0.798 \times 10^{-3} \mathrm{Ns} / \mathrm{m}^{2}$, respectively. The theoretical power required to achieve the stated value of G (in kW , up to two decimal places) is \qquad
Key: (14.36)
Exp: Given,
$\mathrm{V}=1800 \mathrm{~m}^{3}$
$\mathrm{G}=100 \mathrm{~S}^{-1}$
$\mu=0.798 \times 10^{-3} \mathrm{Ns} / \mathrm{m}^{2}$
\therefore Theoretical power, $\mathrm{P}=\mathrm{G}^{2} \mathrm{~V} \mu$

$$
\begin{aligned}
& =(100)^{2} \times 1800 \times 0.798 \times 10^{-3} \\
& =14364 \text { watt }=14.36 \mathrm{kwatt}
\end{aligned}
$$

47. The total horizontal and vertical stresses at a point X in a saturated sandy medium are 170 kPa and 300 kPa , respectively. The static pore water pressure is 30 kPa . At failure, the excess pore water pressure is measured to be 94.50 kPa , and the shear stresses on the vertical and horizontal planes passing through the point X are zero. Effective cohesion is 0 kPa and effective angle of internal friction is 36°. The shear strength (in kPa , up to two decimal places) at point X is \qquad
Key: (52.449)
Exp: $\quad \alpha=45+\frac{\phi}{2}$
$\phi=36^{0}$

$$
\begin{aligned}
\alpha & =45+\frac{\phi}{2}=45+\frac{36}{2}=45+18=63^{0} \\
\bar{\sigma}_{1} & -\sigma-u=300-(30+94.50)=175.5 \\
\bar{\sigma}_{3} & =\sigma-\mathrm{u}=170-(30+94.50)=45.5 \\
\bar{\sigma}_{\mathrm{n}} & =\frac{\bar{\sigma}_{1}+\bar{\sigma}_{3}}{2}+\frac{\bar{\sigma}_{1}-\bar{\sigma}_{3}}{2} \cos 2 \alpha \\
& =\frac{175+45.5}{2}+\frac{175-45.5}{2} \cos (2 \times 63) \\
& =110.25+64.75 \\
& =110.25-3805 \\
& =72.19
\end{aligned}
$$

shear strength $(\tau)=\mathrm{c}+\bar{\sigma}_{\mathrm{n}} \tan \phi$

$$
\begin{aligned}
& =0+72.19 \tan 36 \\
& =52.449 \mathrm{kPa}
\end{aligned}
$$

48. The total rainfall in a catchment of area $1000 \mathrm{~km}^{2}$, during a 6 h storm, is 19 cm . The surface runoff due to this storm computed from triangular direct runoff hydrograph is $1 \times 10^{8} \mathrm{~m}^{3}$. The $\phi_{\text {index }}$ for this storm (in cm /h, up to one decimal place) is \qquad
Key: (1.5)
Exp: Catchment area $=1000 \mathrm{~km}^{2}=1000 \times 10^{6} \mathrm{~m}^{2}$
$\operatorname{rainf} \operatorname{all}(\mathrm{p})=19 \mathrm{~cm}$
duration $(t)=6 \mathrm{hrs}$
surface runoff $=1 \times 10^{8} \mathrm{~m}^{3}$
runoff $=\frac{1 \times 10^{8}}{1000 \times 10^{6}}=\frac{1}{10} \mathrm{~m}=0.1 \mathrm{~m}=10 \mathrm{~cm}$
$\phi-$ index $=\frac{\mathrm{p}-\mathrm{R}}{\mathrm{t}}=\frac{19-10}{6 \mathrm{~h}}=\frac{9}{6}=1.5 \mathrm{~cm} / \mathrm{hr}$
49. A rough pipe of 0.5 m diameter, 300 m length and roughness height of 0.25 mm . carries water (kinematic viscosity $=0.9 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}$) with velocity of $3 \mathrm{~m} / \mathrm{s}$. Friction factor (f) for laminar flow is given by $f=64 / \operatorname{Re}$, and for turbulent flow it is given by $\frac{1}{\sqrt{\mathrm{f}}}=2 \log _{10}\left(\frac{\mathrm{r}}{\mathrm{k}}\right)+1.74$, where, $\operatorname{Re}=$ Reynolds number, $r=$ radius of pipe, $k=$ roughness height and $g=9.81 \mathrm{~m} / \mathrm{s}^{2}$. The head loss (in m , up to three decimal places) in the pipe due to friction is \qquad .
Key: (4.594)
Exp: Reynolds number

$$
\begin{aligned}
\left(\mathrm{R}_{\mathrm{e}}\right)=\frac{\rho \mathrm{VD}}{\mu}=\frac{\mathrm{VD}}{\gamma} & =\frac{3(\mathrm{~m} / \mathrm{s}) \times 0.5 \mathrm{~m}}{0.9 \times 10^{-6}} \\
& =1.6667 \times 10^{6}>2000
\end{aligned}
$$

Flow is turbulent
For Turbulent flow
$\frac{1}{\sqrt{\mathrm{f}}}=2 \log _{10}\left(\frac{\mathrm{r}}{\mathrm{K}}\right)+1.74$
$\frac{1}{\sqrt{\mathrm{f}}}=2 . \log _{10}\left(\frac{0.25 \times 10^{-3}}{0.25}\right)+1.74$
$\frac{1}{\sqrt{\mathrm{f}}}=2 \times 3 \log _{10} 10+1.74$
$\frac{1}{\sqrt{\mathrm{f}}}=7.74 \Rightarrow \mathrm{f}=0.01669$
head loss due to friction $\left(\mathrm{h}_{\mathrm{f}}\right)=\frac{\mathrm{fLV}^{2}}{2 \mathrm{gd}}=\frac{0.01669 \times 300 \times 3^{2}}{2 \times 9.81 \times 0.5}$

$$
=4.594 \mathrm{~m}
$$

50. A schematic flow diagram of a completely mixed biological reactor with provision for recycling of solids is shown in the figure.

S_{0}, $\mathrm{S}=$ readily biodegradable soluble $\mathrm{BOD}, \mathrm{mg} / \mathrm{L}$
$\mathrm{Q}, \mathrm{Q}_{\mathrm{r}}, \mathrm{Q}_{\mathrm{w}}=$ flow rates, $\mathrm{m}^{3} / \mathrm{d}$
$X_{0}, X, X_{e}, X_{u}=$ microorganism concentrations (mixed - liquor volatile suspended solids or MLVSS), mg/L
The mean cell residence time (in days, up to one decimal place) is \qquad .
Key: (7.5)
Exp: Mean cell residence time $\left(\theta_{c}\right)=\frac{\text { mass of MLSS in creation tank }}{\text { mass of MLSS wasted/day }}$

$$
\begin{aligned}
\theta_{c} & =\frac{V \cdot X}{Q_{w} X_{u}+Q_{e} X_{e}}=\frac{V X}{Q_{w} X_{u}+\left(Q-Q_{w}\right) X_{e}} \\
Q & -Q_{w}=14950 \\
Q & =14950+Q_{w} \\
& =14950+50=15000 \mathrm{~m}^{3} / \text { day }
\end{aligned}
$$

[^2]$Q_{e}=Q-Q_{w}=15000-50=14950 \mathrm{~m}^{3} /$ day
Detention time $=2 \mathrm{hr}$
$\frac{\text { Volume }}{\mathrm{Q}}=2 \mathrm{hrs}$
volume $=2 \mathrm{hr} \times 15000 \mathrm{~m}^{3} /$ day
$$
=\frac{2 \times 15000}{24}=\frac{30000}{24} \mathrm{~m}^{3}=1250 \mathrm{~m}^{3}
$$
$Q_{c}=\frac{V \cdot X}{Q_{w} X_{w}+Q_{e} X_{e}}$
$$
=\frac{1250 \times 3000}{50 \times 10000}=7.5 \text { days }
$$
51. A car follows a slow moving truck (travelling at a speed of $10 \mathrm{~m} / \mathrm{s}$) on a two lane two way highway. The car reduces its speed to $10 \mathrm{~m} / \mathrm{s}$ and follows the truck maintaining a distance of 16 m from the truck. On finding a clear gap in the opposing traffic stream, the car accelerates at an average rate of $4 \mathrm{~m} / \mathrm{s}^{2}$, overtakes the truck and returns to its original lane. When it returns to its original lane, the distance between the car and the truck is 16 m . The total distance covered by the car during this period (from the time it leaves its lane and subsequently returns to its lane after overtaking) is
(A) 64 m
(B) 72 m
(C) 128 m
(D) 144 m

Key: (B)
Exp: $d_{2}=V_{B} T+\left(S_{1}+S_{2}\right)$
$\mathrm{S}_{1}=\mathrm{S}_{2}=16 \mathrm{~m}$
$\mathrm{T}=\sqrt{\frac{2\left(\mathrm{~S}_{1}+\mathrm{S}_{2}\right)}{\mathrm{a}}}=\sqrt{\frac{2(16+16)}{4}}=\sqrt{\frac{2 \times 32}{4}}=4$
$\mathrm{d}_{2}=10 \times 4+16+16$
$=40+32=72 \mathrm{~m}$
52. A level instrument at a height of 1.320 m has been placed at a station having a Reduced Level (RL) of 112.565 m . The instrument reads 2.835 m on a levelling staff held at the bottom of a bridge deck. The RL (in m) of the bottom of the bridge deck is
(A) 116.720
(B) 116.080
(C) 114.080
(D) 111.050

Key: (A)
Exp:

$R L=112.565+1.320+2.835=116.72 m$
53. A cable PQ of length 25 m is supported at two ends at the same level as shown in the figure. The horizontal distance between the supports is 20 m . A point load of 150 kN is applied at point R which divides it into two equal parts.

150 kN
Neglecting the self weight of the cable. The tension (in kN . In integer value) in the cable due to the applied load will be \qquad —.

Key: (125)
Exp:

$$
\begin{aligned}
& x^{2}+10^{2}=12.5^{2} \\
& x^{2}=12.5^{2}-10^{2} \\
& x=7.5 m \\
& \cos \theta=\frac{7.5}{12.5}
\end{aligned}
$$

$$
\begin{aligned}
& 2 \mathrm{~T} \cos \theta=150 \mathrm{kN} \\
& \begin{aligned}
\mathrm{T}=\frac{150}{2 \cos \theta} & =\frac{150}{2 \times \frac{7.5}{12.5}} \\
& =125 \mathrm{kN}
\end{aligned}
\end{aligned}
$$

54. At a small water treatment plant which has 4 filters, the rates of filtration and back washing are $200 \mathrm{~m}^{3} / \mathrm{d} / \mathrm{m}^{2}$ and $1000 \mathrm{~m}^{3} / \mathrm{d} / \mathrm{m}^{2}$, respectively. Backwashing is done for 15 min per day. The maturation, which occurs initially as the filter is put back into service after cleaning, takes 30 min . It is proposed to recover the water being wasted during backwashing and maturation. The percentage increase in the filtered water produced (up to two decimal places) would be \qquad _.

Key: (7.528)
Exp: \% increase in filtered water $=\frac{\text { volume of water used in back washing }}{\text { volume of filtered water }} \times 100$

$$
\begin{aligned}
& =\frac{\text { volume of water used in }(\text { back washing }+ \text { maturation })}{\text { volume of filtered water }} \times 100 \\
& =\frac{\mathrm{ROB} \times \mathrm{DOB} \times \text { Area of filter }+\mathrm{ROM} \times \mathrm{DOM} \times \text { Area }}{\mathrm{ROF} \times \mathrm{DOF} \times \text { Area of filter }} \times 100 \\
& =\frac{1000 \times \frac{15 \mathrm{~min}}{24 \times 60 \mathrm{~min}}+200 \times \frac{30 \mathrm{~min}}{24 \times 60 \mathrm{~min}}}{200 \times \frac{(24-0.75) \mathrm{hr}}{24 \mathrm{hr}}} \times 100 \\
& =\frac{10.42+4.167}{193.75} \times 100=7.528 \%
\end{aligned}
$$

55. The rank of the following matrix is

$$
\left[\begin{array}{cccc}
1 & 1 & 0 & -2 \\
2 & 0 & 2 & 2 \\
4 & 1 & 3 & 1
\end{array}\right]
$$

(A) 1
(B) 2
(C) 3
(D) 4

Key: (B)
Exp: $\left[\begin{array}{rrrr}1 & 1 & 0 & -2 \\ 2 & 0 & 2 & 2 \\ 4 & 1 & 3 & 1\end{array}\right]$
Reducing intoEchelon form

$$
\begin{aligned}
\mathrm{R}_{2} & \rightarrow \mathrm{R}_{2}-2 \mathrm{R}_{1} \\
\mathrm{R}_{3} & \rightarrow \mathrm{R}_{3}-4 \mathrm{R}_{1} \quad \sim\left[\begin{array}{cccc}
1 & 1 & 0 & -2 \\
0 & -2 & 2 & 6 \\
0 & -3 & 3 & 9
\end{array}\right] \\
\mathrm{R}_{3} & \rightarrow 2 \mathrm{R}_{3}-3 \mathrm{R}_{2} \quad \sim\left[\begin{array}{cccc}
1 & 1 & 0 & -2 \\
0 & -2 & 2 & 6 \\
0 & 0 & 0 & 0
\end{array}\right] \\
\text { Rank } & =\text { No of non-zero rows } \\
& =2
\end{aligned}
$$

What Next after GATE? IIT|PSU|M.Tech

Evaluate your GATE performance with key and explanation available at www.gateforum.com

After applying for all eligible courses and jobs, prepare for written tests and Interviews

Follow the latest notifications from IITs, NITs and PSUs and be ready with required documents.
eep your options open by applying to Private universities, Government and Private jobs recruiting without GATE

Online Post GATE guidance session by GATEFORUM Experts

To know more visit www.gateforum.com
Our Offerings for GATE 19/20

Our Network

Agartala 9856034530 |Agra 9760012902 | Ahmedabad 8401699466 | Ajmer $9829075765 \mid$ Aligarh $9761636422 \mid$ Allahabad $9839330710 \mid$ Amravati 8237551611 | Bangalore 9886600010 | Bilaspur 9993973456 | Calicut 9961969988 |Chandigarh 9317607007 |Chennai $9677030010 \mid$ Coimbatore 8883332556 | Delhi (Pitampura) 9718612147 | Delhi (Saket) 8587010876 | Ghaziabad 9910101602 | Gorakhpur 8574598018 |Greater Noida 9891990434 Hyderabad (Abids) 9989477436 | Hyderabad (Dilsukhnagar) 9581626677 | Indore 9826010276 | Jaipur 8290089245 | Jalandhar 7696197007 | Kanchipuram 8695554546 | Kanpur 9839234875 | Kochi 8113020304 | Kolhapur 9763631729 | Kolkata (Minto Park) 9007889898 | Kolkata (Vip Road) 9831891898 | Kollam 9048497233 | Madurai 8754029058 | Mumbai (Dadar) 9967897127 | Mumbai (Thane) 7893336874 | Mysore 9980155550 | Nagpur 7767001955 | Nanded 9172263930 | Nashik 8888559922 | Noida 9560983851 | Pune 9561133868 | Rajkot 9909986464 | Ranchi $8804445566 \mid$ Silchar 9957577496 | Surat 9377859870 | Srinagar 9906475295 Trichy 7667369058 | Trivandrum 9447132291 | V V Nagar 7778829064 | Vadodara 8401646906

Engineering Success

www.gateforum.com

[^0]: © All rights reserved by Thinkcell Learning Solutions Pvt. Ltd. No part of this booklet may be reproduced or utilized in any form without the written permission.

[^1]: © All rights reserved by Thinkcell Learning Solutions Pvt. Ltd. No part of this booklet may be reproduced or utilized in any form without the written permission.

[^2]: © All rights reserved by Thinkcell Learning Solutions Pvt. Ltd. No part of this booklet may be reproduced or utilized in any form without the written permission.

