FOR MORE EXCLUSIVE

 (Civil, Mechanical, EEE, ECE)

 (Civil, Mechanical, EEE, ECE)

 ENGINEERING \& GENERAL STUDIES

 ENGINEERING \& GENERAL STUDIES}
(Competitive Exams)

TEXT BOOKS, IES GATE PSU's TANCET 8 GOVT EXAMS NOTES \& ANNA UNVVERSITY STUDY MATERIALS

VISIT
wwW.EasyEngineering•net
AN EXCLUSIVE WEBSITE FOR ENGINEERING STUDENTS \& GRADUATES

**Note: Other Websites/ Blogs Owners Please do not Copy (or) Republish this Materials without Legal Permission of the Publishers.
**Disclimers : EasyEngineering not the original publisher of this Book/Material on net. This e-book/Material has been collected from other sources of net.

CE-GATE 2018

Section-I: General Ability

1. Hema's age is 5 years more than twice Hari's age. Suresh's age is 13 years less than 10 times Hari's age. If Suresh is 3 times as old as Hema, how old is Hema?
(A) 14
(B) 17
(C) 18
(D) 19

Key: (D)
Exp: Let Hari's age be ' x ' years.
$\left.\begin{array}{l}\text { Then Hema' age }=2 x+5 \\ \text { Suresh's age }=10 x-3\end{array}\right] \rightarrow($ Given $)$
Also given, Suresh is 3 times as old as Hema.

$$
\begin{aligned}
& \text { i.e., } 10 \mathrm{x}-13=3(2 \mathrm{x}+5) \\
& \Rightarrow 10 \mathrm{x}-6 \mathrm{x}=15+13 \\
& \Rightarrow 4 \mathrm{x}=28 \\
& \Rightarrow \mathrm{x}=7
\end{aligned}
$$

\therefore Hema's age $=2 x+5=2(7)+5=19$ years
2. Tower A is 90 m tall and tower B is 140 m tall. They are 100 m apart. A horizontal skywalk connects the floors at 70 m in both the towers. If a taut rope connects the top of tower A to the bottom of tower B, at what distance (in meters) from tower A will the rope intersect the skywalk?
Key: 22.22
Exp: From the given data;
Clearly;
$\Delta^{l e} \mathrm{KNO} \& \Delta^{l e} \mathrm{KJL}$
are similar traingles; sin ce
$\left\{\begin{array}{l}\left\lfloor\mathrm{KNO}=\left\lfloor\mathrm{KJO}=90^{\circ}\right.\right. \\ \lfloor\mathrm{NOK}=\lfloor\mathrm{JLK} . \quad[\because \mathrm{NP} / / \mathrm{JL}] \\ \text { By AA similarity criterian; } \\ \Delta^{e e} \mathrm{KNO} \& \Delta^{\text {ee }} \mathrm{KJL} \text { are similar }\end{array}\right\}$
$\therefore \frac{\mathrm{NK}}{\mathrm{KJ}}=\frac{\mathrm{NO}}{\mathrm{JL}}$
$\Rightarrow \frac{20}{90}=\frac{\mathrm{x}}{100}[$ where $\mathrm{x}=\mathrm{NO}]$
$\Rightarrow \mathrm{x}=\frac{100 \times 20}{90}=22.22$ meters.

[^0]3. The temperature T in a room varies as a function of the outside temperature T_{0} and the number of persons in the room p, according to the relation $T=K\left(\Theta p+T_{0}\right)$, Where Θ and K are constants. What would be the value of Θ given the following data?

$\mathbf{T}_{\mathbf{0}}$	\mathbf{P}	\mathbf{T}
25	2	32.4
30	5	42.0

(A) 0.8
(B) 1.0
(C) 2.0
(D) 10.0

Key: (B)
Exp: Given,

$$
\mathrm{T}=\mathrm{K}\left(\theta \mathrm{P}+\mathrm{T}_{\mathrm{o}}\right) ; \text { where } \theta \& \mathrm{~K} \text { are constants }
$$

From the given table; $\mathrm{T}_{\mathrm{o}}=25 ; \mathrm{P}=2 ; \mathrm{T}=32.4$

$$
\begin{gathered}
\& \\
\mathrm{~T}_{\mathrm{o}}=30 ; \mathrm{P}=5 ; \mathrm{T}=42.0 \\
32.4=\mathrm{K}(\theta 2+25) \rightarrow(2) \\
42.0=\mathrm{K}(\theta 5+30) \rightarrow(3)
\end{gathered}
$$

$$
\operatorname{From}(1) \Rightarrow \quad 32.4=\mathrm{K}(\theta 2+25) \rightarrow(2)
$$

$$
(2) \times 5-(3) \times 2 \Rightarrow 162=10 \mathrm{~K} \theta+125 \mathrm{~K}
$$

$$
84=10 \mathrm{~K} \theta+60 \mathrm{~K}
$$

$$
\frac{(-) \quad(-) \quad(-)}{\Rightarrow 78=65 \mathrm{~K}}
$$

$$
\Rightarrow \mathrm{K}=78 / 65=1.2
$$

$$
\begin{aligned}
& \therefore \text { From }(2) ; 32.4=\mathrm{K}(\theta 2+25) \\
& \Rightarrow 32.4=1.2(\theta 2+25) \\
& \Rightarrow 32.4=2.4 \theta+30 \\
& \Rightarrow 2.4 \theta=2.4 \\
& \quad \Rightarrow \theta=\frac{2.4}{2.4}=1 .
\end{aligned}
$$

4. "The driver applied the \qquad a as soon as she approached the hotel where she wanted to take a \qquad ." The words that best fill the blanks in the above sentence are
(A) brake, break
(B) break, break
(C) brake, brake
(D) break, brake

Key: (A)
5. "It is no surprise that every society has had codes of behaviour; however, the nature of these codes is often \qquad .$"$
The word that best fills the blank in the above sentence is
(A) unpredictable
(B) simple
(C) expected
(D) strict

Key: (A)
6. Each of the letters arranged as below represents a unique integer from 1 to 9 . The letters are positioned in the figure such that $(A \times B \times C),(B \times G \times E)$ and $(D \times E \times F)$ are equal. Which integer among the following choices cannot be represented by the letters $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}$ or G ?

(A)
4 (B)
5 (C)
6 (D) 9

Key: (B)

Exp: Consider

$$
\begin{gathered}
\mathrm{A}=1 ; \mathrm{B}=9 ; \mathrm{C}=8 \\
\mathrm{G}=2 \\
\mathrm{D}=6 ; \mathrm{E}=4 ; \mathrm{F}=3 .
\end{gathered}
$$

Then $\quad \mathrm{A} \times \mathrm{B} \times \mathrm{C}=1 \times 9 \times 8=72$

$$
\mathrm{B} \times \mathrm{G} \times \mathrm{E}=9 \times 2 \times 4=72
$$

$$
\mathrm{D} \times \mathrm{E} \times \mathrm{F}=6 \times 4 \times 3=72
$$

$\therefore \mathrm{E}=4 ; \mathrm{D}=6 ; \mathrm{B}=9$
The integer ' 5 ' cannot be represented by the letters A, B, C,D, E,F,G.
7. Which of the following function (s) is an accurate description of the graph for the range (s) indicated?
(i) $y=2 x+4$ for $-3 \leq x \leq-1$
(ii) $y=|x-1|$ for $-1 \leq x \leq 2$
(iii) $y=||x| x-1|$ for $-1 \leq x \leq 2$
(iv) $\mathrm{y}=1$ for $2 \leq \mathrm{x} \leq 3$

(A) (i), (ii) and (iii) only
(B) (i), (ii) and (iv) only
(C) (i) and (iv) only
(D) (ii) and (iv) only

Key: (B)
Exp: From the graph; $\mathrm{y}=1$ for $2 \leq \mathrm{x} \leq 3$.
\Rightarrow (iv) is correct.
From the graph we can see that

$$
\begin{aligned}
& y=2 x+4 \text { for }-3 \leq x \leq-1 \\
& {[\text { If } x=-3 ; y=-2 \& \text { If } x=-1 ; y=2]}
\end{aligned}
$$

\therefore (i) is correct
From the graph;
if $\quad x=1, y=0 ; \quad x=-1, y=2 ; \quad x=2, y=1$
i.e, $\mathrm{y}=|\mathrm{x}-1|$ for $-1 \leq \mathrm{x} \leq 2$
\therefore (ii) is correct.
$\operatorname{But}($ iii $)$ is not correct; since at $x=-1 ; y=0$.
But from the graph at $x=-1 ; y=2$.
8. Consider a sequence of numbers $a_{1}, a_{2}, a_{3}, \ldots \ldots . . ., a_{n}$ where $a_{n}=\frac{1}{n}-\frac{1}{n+2}$, for each integer $n>0$.

What is the sum of the first 50 terms?
(A) $\left(1+\frac{1}{2}\right)-\frac{1}{50}$
(B) $\left(1+\frac{1}{2}\right)+\frac{1}{50}$
(C) $\left(1+\frac{1}{2}\right)-\left(\frac{1}{51}+\frac{1}{52}\right)$
(D) $1-\left(\frac{1}{51}+\frac{1}{52}\right)$

Key: (C)
Exp: Given $a_{n}=\frac{1}{n}-\frac{1}{n+2} ; n>0$; where ' n ' is int eger.

\therefore sum of the first 50 terms $=a_{1}+a_{2}+a_{3}+\ldots+a_{50}$

$$
\begin{aligned}
& =\left(\frac{1}{1}-\frac{1}{3}\right)\left(\frac{1}{2}-\frac{1}{4}\right)+\left(\frac{1}{3}-\frac{1}{5}\right)+\left(\frac{1}{4}-\frac{1}{6}\right) \ldots \ldots+\left(\frac{1}{48}-\frac{1}{50}\right) \\
& \quad+\left(\frac{1}{49}-\frac{1}{51}\right) \ldots \ldots+\left(\frac{1}{50}-\frac{1}{52}\right) \\
& =\left(1+\frac{1}{2}\right)-\left(\frac{1}{51}+\frac{1}{52}\right)\left[\because \frac{1}{49} \text { also get cancell with }+\left(\frac{1}{47}-\frac{1}{49}\right)\right]
\end{aligned}
$$

\therefore sum of the first 50 terms $=\left(1+\frac{1}{2}\right)-\left(\frac{1}{51}+\frac{1}{52}\right)$

CE-GATE 2018

9. The price of a wire made of superalloy material is proportional to the square of its length. The price of 10 m length of the wire is Rs. 1600 . What would be the total price (in RS.) of two wires of lengths 4 m and 6 m ?
(A) 768
(B) 832
(C) 1440
(D) 1600

Key: (B)
Exp: Let us assume that,
Length of wire $=\mathrm{x} \mathrm{m}$ \& price of wire Rs p/meter
Given $P \alpha x^{2}$.
$\Rightarrow \mathrm{P}=\mathrm{kx}^{2} \rightarrow(1)$
Given; If $x=10 \mathrm{~m}$; then $\mathrm{P}=1600$
From $(1) ; 1600=k(10)^{2}$
$\Rightarrow \mathrm{K}=16$
$\therefore \mathrm{P}=16 \mathrm{x}^{2}[\because$ form $(1)]$
If $x=4$; then $p=16 \times 4^{2}=16 \times 16=256 \rightarrow(1)$
Ifx $=6$; then $p=16 \times 6^{2}=16 \times 36=576 \rightarrow(2)$
$(1)+(2) \Rightarrow$ Total price $=256+576=832$.
10 A fruit seller sold a basket of fruits at 12.5% loss. Had he sold it for Rs. 108 more, he would have made a 10% gain. What is the loss in Rupees incurred by the fruit seller?
(A) 48
(B) 52
(C) 60
(D) 108

Key: (C)
Exp: $\quad \mathrm{CP} \times 12.5 \%=$ Loss $\Rightarrow \mathrm{CP} \times 12.5 \%=\mathrm{CP}-\mathrm{SP} \rightarrow(1)$
$\mathrm{CP} \times 10 \%=$ Gain $\Rightarrow \mathrm{CP} \times 10 \%=(\mathrm{SP}+108)-\mathrm{CP} \rightarrow(2)$
$(1)+(2) \Rightarrow \mathrm{CP}[22.5 \%]=108$
$\mathrm{CP}=\frac{108}{22.5 \%}$
\therefore Loss $=\frac{108}{22.5 \%} \times 12.5 \%=60 .(\because \mathrm{CP} \times 12.5 \%=$ Loss $)$

Section-II: Civil Engineering

1. The percent reduction in the bearing capacity of a strip footing resting on sand under flooding condition (water level at the base of the footing) when compared to the situation where the water level is at a depth much greater than the width of footing, is approximately
(A) 0
(B) 25
(C) 50
(D) 100

Key: (C)
$\operatorname{Exp}: \quad q_{u}=C \cdot N_{C}+\left(\gamma \cdot D_{f}\right) \cdot N_{q}+\frac{1}{2} B \gamma N_{\gamma}$ (Strip footing) for footing on sandy ground,
$\mathrm{C}=0 ; \mathrm{D}_{\mathrm{f}}=0$
$\Rightarrow \mathrm{q}_{\mathrm{u}}=\frac{1}{2} \mathrm{~B} \gamma \mathrm{~N}_{\gamma}$ (when water table is at a depth greater than width (B)of footing)
When water table comes at ground level than $\gamma=\gamma^{\prime}$
$\mathrm{q}_{\mathrm{u}}=\frac{1}{2} \mathrm{~B} \gamma^{\prime} \mathrm{N}_{\gamma}$
$\therefore \gamma^{\prime} \simeq \frac{\gamma}{2} \Rightarrow q_{u}=\frac{1}{4} B \gamma N_{\gamma}$
$\Rightarrow \%$ reduction in $\mathrm{q}_{\mathrm{u}}=\frac{\frac{1}{2} \mathrm{~B} \gamma \mathrm{~N}_{\gamma}-\frac{1}{4} \mathrm{~B} \gamma \mathrm{~N}_{\gamma}}{\frac{1}{2} \mathrm{~B} \gamma \mathrm{~N}_{\gamma}} \times 100 \%=50 \%$
2. A column of height h with a rectangular cross section of size a $\times 2 \mathrm{a}$ has a buckling load of P . If the cross section is changed to $0.5 \mathrm{a} \times 3 \mathrm{a}$ and its height changed to 1.5 h , the buckling load of the redesigned column will be
(A) $\mathrm{P} / 12$
(B) $\mathrm{P} / 4$
(C) $\mathrm{P} / 2$
(D) $3 \mathrm{P} / 4$

Key: (A)
Exp: Buckling load, $\mathrm{P}_{\mathrm{u}}=\frac{\pi^{2} E I_{\text {min }}}{L_{\text {eff }}^{2}}$
Given; $\mathrm{P}=\frac{\pi^{2} \mathrm{E}\left(\mathrm{a}^{3} \times 2 \mathrm{a} / 12\right)}{\mathrm{h}^{2}}=\frac{\pi^{2} \mathrm{Ea}^{4}}{6 \mathrm{~h}^{2}}$
Buckling load of redesigned column $=\frac{\pi^{2} \mathrm{E} \frac{\left((0.5 \mathrm{a})^{3} \times 3 \mathrm{a}\right)}{12}}{(1.5 \mathrm{~h})^{2}}=\frac{\pi^{2} \mathrm{Ea}^{4}}{72 \mathrm{~h}^{2}}=\frac{\mathrm{P}}{12}$
3. A steel column o ISHB $350 @ 72.4 \mathrm{~kg} / \mathrm{m}$ is subjected to a factored axial compressive load of 2000 kN . The load is transferred to a concrete pedestal of grade M20 through a square base plate. Consider bearing strength of concrete as $0.45 \mathrm{f}_{\mathrm{ck}}$, where f_{ck} is the characteristic strength of concrete.

[^1]
CE-GATE 2018

Using limit state method and neglecting the self weight of base plate and steel column, the length of a side of the base plate to be provided is
(A) 39 cm
(B) 42 cm
(C) 45 cm
(D) 48 cm

Key: (D)
Exp: Bearing stress on concrete $=\frac{\text { Factored load }}{\text { Area of plate }}$
$\Rightarrow 0.45 \mathrm{f}_{\mathrm{ck}}=\frac{2000 \times 1000 \mathrm{~N}}{\mathrm{x}^{2}}[\mathrm{x}=$ size of squre plate $]$
$\Rightarrow \mathrm{x}=\sqrt{\frac{2 \times 10^{6}}{0.45 \times 20}}$
$\Rightarrow \mathrm{x}=471.4 \mathrm{~mm} \Rightarrow \mathrm{x}=47.14 \simeq 48 \mathrm{~cm}$
4. A 1:50 model of a spillway is to be tested in the laboratory. The discharge in the prototype spillway is $1000 \mathrm{~m}^{3} / \mathrm{s}$. The corresponding discharge ($\mathrm{in} \mathrm{m}^{3} / \mathrm{s}$, up to two decimal places) to be maintained in the model, neglecting variation in acceleration due to gravity, is \qquad -.
Key: 0.0565
Exp: For flow over spillway, froude's model law is and :

$$
\begin{aligned}
& \Rightarrow F_{m}=F_{p} \\
& \Rightarrow \frac{V_{m}}{\sqrt{g D_{m}}}=\frac{V_{p}}{\sqrt{g D_{p}}} \Rightarrow \frac{V_{m}^{2}}{D_{m}}=\frac{V_{p}^{2}}{D_{p}} \\
& \Rightarrow \frac{D_{m}^{4} V_{m}^{2}}{D_{m}^{5}}=\frac{V_{p}^{2} D_{p}^{4}}{D_{p}^{5}} \\
& \Rightarrow \frac{Q_{p}}{Q_{m}}=\left(\frac{D_{p}}{D_{m}}\right)^{5 / 2} \Rightarrow Q_{m}=\left(\frac{1}{50}\right)^{5 / 2} \times 1000 \\
& Q_{m}=0.0565 \mathrm{~m}^{3} / \mathrm{s}
\end{aligned}
$$

5. A bitumen sample has been graded as VG30 as per IS : 73-2013. The ' 30 ' in the grade means that
(A) penetration of bitumen at $25^{\circ} \mathrm{C}$ is between 20 and 40
(B) viscosity of bitumen at $60^{\circ} \mathrm{C}$ is between 2400 and 3600 poise
(C) ductility of bitumen at $27^{\circ} \mathrm{C}$ is more than 30 cm
(D) elastic recovery of bitumen at $15^{\circ} \mathrm{C}$ is more than 30%

Key: (B)
6. For the given orthogonal matrix Q

$$
\mathrm{Q}=\left[\begin{array}{ccc}
3 / 7 & 2 / 7 & 6 / 7 \\
-6 / 7 & 3 / 7 & 2 / 7 \\
2 / 7 & 6 / 7 & -3 / 7
\end{array}\right]
$$

The inverse is
(A) $\left[\begin{array}{ccc}3 / 7 & 2 / 7 & 6 / 7 \\ -6 / 7 & 3 / 7 & 2 / 7 \\ 2 / 7 & 6 / 7 & -3 / 7\end{array}\right]$
(B) $\left[\begin{array}{ccc}-3 / 7 & -2 / 7 & -6 / 7 \\ 6 / 7 & -3 / 7 & -2 / 7 \\ -2 / 7 & -6 / 7 & 3 / 7\end{array}\right]$
(C) $\left[\begin{array}{ccc}3 / 7 & -6 / 7 & 2 / 7 \\ 2 / 7 & 3 / 7 & 6 / 7 \\ 6 / 7 & 2 / 7 & -3 / 7\end{array}\right]$
(D) $\left[\begin{array}{ccc}-3 / 7 & 6 / 7 & -2 / 7 \\ -2 / 7 & -3 / 7 & -6 / 7 \\ -6 / 7 & -2 / 7 & 3 / 7\end{array}\right]$

Key: (C)
Exp: Given, G is orthogonal matrix.
For orthogonal matrix; $\mathrm{Q}^{-1}=\mathrm{Q}^{\mathrm{T}}$

$$
\begin{aligned}
& \Rightarrow Q^{-1}=\left[\begin{array}{ccc}
3 / 7 & 2 / 7 & 6 / 7 \\
-6 / 7 & 3 / 7 & 2 / 7 \\
2 / 7 & 6 / 7 & -3 / 7
\end{array}\right]^{\mathrm{T}} \text {; where } \mathrm{Q}=\left[\begin{array}{ccc}
3 / 7 & 2 / 7 & 6 / 7 \\
-6 / 7 & 3 / 7 & 2 / 7 \\
2 / 7 & 6 / 7 & -3 / 7
\end{array}\right] \\
& \Rightarrow \mathrm{Q}^{-1}=\left[\begin{array}{ccc}
3 / 7 & -6 / 7 & 2 / 7 \\
2 / 7 & 3 / 7 & 6 / 7 \\
6 / 7 & 2 / 7 & -3 / 7
\end{array}\right] .
\end{aligned}
$$

7. The frequency distribution of the compressive strength of 20 concrete cube specimens is given in

$\mathrm{f}(\mathrm{MPa})$	Number of specimens with compressive strength equal to f
23	4
28	2
22.5	5
31	5
29	4

If μ is the mean strength of the specimens and σ is the standard deviation, the number of specimens (out of 20) with compressive strength less than $\mu-3 \sigma$ is \qquad
Key: (0)
Exp: mean strength $(\mu)=\frac{4 \times 23+2 \times 28+5 \times 22.5+5 \times 31+4 \times 29}{4+2+5+5+4}=\frac{531.5}{20}=26.575 \mathrm{MPa}$
sandard deviation $\sigma=\sqrt{\begin{array}{l}(23-26.575)^{2} \times 4+(28-26.575)^{2} \times 2+(22.5-26.575)^{2} \times 5+(31-26.575)^{2} \times 5 \\ +(29-26.575)^{2} \times 4\end{array}}$

$$
=3.697
$$

$\mu-3 \sigma=26.575-3 \times 3697=15.487$
No specimen is having compressive strength of 15.487 MPa (or nearer)
8. At the point $x=0$, the function $f(x)=x^{3}$ has
(A) local maximum
(B) local minimum
(C) both local maximum and minimum
(D) neither local maximum nor local minimum

Key: (D)
Exp: Given $\mathrm{f}(\mathrm{x})=\mathrm{x}^{3}$
We will find stationary points of $f(x)$ by solving $f^{\prime}(x)=0$
$\therefore \mathrm{f}^{\prime}(\mathrm{x})=0 \Rightarrow 3 \mathrm{x}^{2}=0 \Rightarrow \mathrm{x}=0$.
$f^{\prime \prime}(x)=6 x$
$\Rightarrow \mathrm{f}$ " $(0)=0$
$f^{\prime \prime \prime}(x)=6 \neq 0$ at $x=0$
$\therefore \mathrm{x}=0$ is a saddle point.
\Rightarrow There is neither maximum nor minimum exists at $x=0$.
9. There are 20,000 vehicles operating in a city with an average annual travel of $12,000 \mathrm{~km}$ per vehicle. The NO_{x} emission rate is $2.0 \mathrm{~g} / \mathrm{km}$ per vehicle. The total annual release of NO_{x} will be
(A) $4,80,000 \mathrm{~kg}$
(B) $4,800 \mathrm{~kg}$
(C) 480 kg
(D) 48 kg

Key: (A)
Exp: Annual release of No_{x} by 1 vehicle $=\frac{12,000 \times 2}{1000}=24 \mathrm{~kg}$
\Rightarrow Annual release of all 20,000 vehicles $=24 \times 20,000=4,80,000 \mathrm{~kg}$
10. A solid circular beam with radius of 0.25 m and length of 2 m is subjected to a twisting moment of 20 kNm about the z-axis at the free end, which is the only load acting as shown in the figure. The shear stress component τ_{xy} at Point ' M ' in the cross section of the beam at a distance of 1 m from the fixed end is

[^2]CE-GATE 2018

(A) 0.0 MPa
(B) 0.51 MPa
(C) 0.815 MPa
(D) 2.0 MPa

Key: (A)
Exp: Twisting moment $=20 \mathrm{kNm}$

$$
\begin{aligned}
& \text { By equation } \\
& \frac{\mathrm{T}}{\mathrm{~J}}=\frac{\mathrm{G} \theta}{1}=\frac{\tau}{\gamma} \\
& \frac{\tau}{\gamma}=\frac{\mathrm{T}}{\mathrm{~J}} \\
& \tau_{\max }=\frac{\mathrm{Tr}}{\mathrm{~J}}
\end{aligned}
$$

As the solid circular beam subjected to twisting moment about the Z-axis, then the shaft is subjected to shearing stresses in planes zy and xz only. The shear stress in xy plane is zero
11. The speed density relationship for a road section is shown in the figure.

The shape of the flow-density relationship is
(A) piecewise linear
(B) parabolic
(C) initially linear than parabolic
(D) initially parabolic then linear

Key: (C)
Exp: Given

Density (x)

CE-GATE 2018

$$
\begin{aligned}
\text { Flow } & =\text { speed } \times \text { density } \\
& =y \times x \\
\text { for } y & =k ; \quad \text { Flow }=k x
\end{aligned} \begin{aligned}
\text { for } y & =m x+c ; \text { Flowear }
\end{aligned}=(m x+c) x .
$$

12. The width of a square footing and the diameter of circular footing are equal. If both the footings are placed on the surface of sandy soil, the ratio of the ultimate bearing capacity of circular footing to that of square footing will be
(A) $4 / 3$
(B) 1
(C) 3/4
(D) $2 / 3$

Key: (C)
Exp: $\left.q_{u}\right)$ circular $=1.3 \mathrm{CN}_{\mathrm{C}}+\left(\gamma \mathrm{D}_{\mathrm{f}}\right) \mathrm{N}_{\mathrm{q}}+0.3 \gamma \mathrm{DN} \gamma$
For sandy soil \& footing placed on the surface of soil,
$\mathrm{C}=0 \& \mathrm{D}_{\mathrm{f}}=0$
$\Rightarrow \mathrm{q}_{\mathrm{u}}$) circuler $=0.3 \gamma \mathrm{DN} \gamma$
$\left.\mathrm{q}_{\mathrm{u}}\right)$ square $=1.3{ }_{\mathrm{C}} \mathrm{N}_{\mathrm{C}}+\left(\gamma \mathrm{D}_{\mathrm{f}}\right) \mathrm{N}_{\mathrm{q}}+0.4 \gamma \mathrm{BN}_{\gamma}$ $=0.4 \gamma \mathrm{BN}_{\gamma}$
$\because \mathrm{D}=\mathrm{B} \Rightarrow \frac{\left.\mathrm{q}_{\mathrm{u}}\right) \text { cicular }}{\mathrm{q}_{\mathrm{u}} \text {) square }}=\frac{0.3 \gamma \mathrm{BN}_{\gamma}}{0.4 \gamma \mathrm{BN}_{\gamma}}=\frac{3}{4}$
13. A well designed signalized intersection is one in which the
(A) crossing conflicts are increased
(B) total delay is minimized
(C) cycle time is equal to the sum of red and green times in all phases
(D) cycle time is equal to the sum of red and yellow times in all phase

Key: (B)
Exp: For good signalised intersection, crossing conflicts should be lesser
\rightarrow Vehicle delay is the most important parameter used by transportation professionals in evaluating the performance of a signalized intersection
\rightarrow Minimum delay ensures lesser fuel loss, lesser congestion and lesser time loss of public ,
Hence, a well designed signalized intersection is one in which total delay in minimized
14. A flow field is given by $u=y^{2}, v=-x y, w=0$. Value of the $z-$ component of the angular velocity (in radians per unit time, up to two decimal places) at the point $(0,-1,1)$ is \qquad

Ⓒ All rights reserved by Thinkcell Learning Solutions Pvt. Ltd. No part of this booklet may be reproduced or utilized in any form without the written permission.

Key: (1.5)
Exp: $\quad w_{z}=\frac{1}{2}\left(\frac{\partial v}{\partial \mathrm{x}}-\frac{\partial \mathrm{u}}{\partial \mathrm{y}}\right)$

$$
\begin{aligned}
& \quad=\frac{1}{2}\left(\frac{\partial(-x y)}{\partial x}-\frac{\partial\left(y^{2}\right)}{\partial y}\right) \\
& \quad=\frac{1}{2}(-y-2 y)=\frac{-3 y}{2} \\
& \operatorname{At}(0,-1,1) ; w_{z}=\frac{-3 \times(-1)}{2}=1.5
\end{aligned}
$$

15. In a shrinkage limit test, the volume and mass of a dry soil pat are found to be $50 \mathrm{~cm}^{3}$ and 88 g , respectively. The specific gravity of the soil solids is 2.71 and the density of water is $1 \mathrm{~g} / \mathrm{cc}$. The shrinkage limit (in \%, up to two decimal places) is \qquad
Key: 19.92
Exp: Given Mass of dry soil $=88 \mathrm{~g}$

$$
\begin{aligned}
& \Rightarrow \gamma_{\mathrm{d}}=\frac{\mathrm{M}_{\mathrm{d}}}{\mathrm{~V}}=\frac{88}{50} \mathrm{~g} / \mathrm{cm}^{3} \\
& \text { also, } \gamma_{\mathrm{d}}=\frac{\mathrm{G}}{1+\mathrm{e}} \gamma_{\mathrm{w}} \Rightarrow \frac{88}{50}=\frac{\mathrm{G}}{1+\mathrm{e}}(1)\left[\because \gamma_{\mathrm{w}}=1 \mathrm{~g} / \mathrm{cm}^{3}\right] \\
& \Rightarrow \mathrm{G}=\frac{88}{50}(1+\mathrm{e}) \\
& \Rightarrow \mathrm{e}=0.5397 \\
& \Rightarrow \text { shrinkage limit }=\frac{\mathrm{e}}{\mathrm{G}}=\frac{0.5397}{2.71}=0.19915 \\
& \qquad \operatorname{In} \%, \mathrm{w}_{\mathrm{s}}=19.92 \%
\end{aligned}
$$

16. A 10 m wide rectangular channel carries a discharge of $20 \mathrm{~m}^{3} / \mathrm{s}$ under critical condition. Using $\mathrm{g}=9.81 \mathrm{~m} / \mathrm{s}^{2}$, the specific energy (in m , up to two decimal places) is \qquad

Key: 1.11

Exp: Specific energy for a rectangular channel

$$
\begin{aligned}
& =E_{c}=1.5 y_{c} \\
& y_{c}=\left(q^{2} / \mathrm{g}\right)^{1 / 3}=\left[\frac{(20 / 10)^{2}}{9.81}\right]^{1 / 3}[q=Q / B=20 / 10] \\
& \quad=0.7417 \mathrm{~m} \\
& \Rightarrow E_{c}=1.5 \times 0.7417=1.11 \mathrm{~m}
\end{aligned}
$$

CE-GATE 2018

17. The Le Chatelier apparatus is used to determine
(A) Compressive strength of cement
(B) fineness of cement
(C) setting time of cement
(D) soundness of cement

Key: (D)
Exp: Le-chatelier apparatus is used to determine soundness of cement
18. A city generates $40 \times 10^{6} \mathrm{~kg}$ of municipal solid waste (MSW) per year, out of which only 10% is recovered / recycled and the rest goes to landfill. The landfill has a single lift of 3 m height and is compacted to a density of $550 \mathrm{~kg} / \mathrm{m}^{3}$. If 80% of the landfill is assumed to be MSW, the landfill area (in m^{2}, up to one decimal place) required would be \qquad
Key: 27272.7
Exp: Total waste (MSW) generated for year $=40 \times 10^{6} \mathrm{Kg}$
MSW that goes to landfill $=0.9 \times 40 \times 10^{6}$

$$
=36 \times 10^{6} \mathrm{~kg}
$$

Compacted density of waste $=550 \mathrm{~kg} / \mathrm{m}^{3}$
\Rightarrow Total valume of waste $=\frac{36 \times 10^{6}}{550 \mathrm{~kg} / \mathrm{m}^{3}}=65454.54 \mathrm{~m}^{3}$
Let $\mathrm{A} \mathrm{m}^{2}$ be landfill area required
\Rightarrow MSW land area $=0.8 \mathrm{~A}=\frac{65454.54}{\mathrm{~m}} \mathrm{~m}^{3} \Rightarrow \mathrm{~A}=27272.7 \mathrm{~m}^{2}$
19. In a fillet weld, the direct shear stress and bending tensile stress are 50 MPa and 150 MPa , respectively. As per IS 800:2007, the equivalent stress (in MPa up to two decimal places) will be
\qquad
Key: $\mathbf{1 7 3 . 2 0 5} \mathbf{~ M P a}$
Exp: As per Is 800:2007, Equivalent resultant stress

$$
\begin{aligned}
& =\sqrt{\mathrm{f}^{2}+3 \cdot \mathrm{q}^{2}} \leq \frac{\mathrm{f}_{\mathrm{u}}}{\sqrt{3} \cdot \gamma_{\mathrm{m}}} \\
& =\sqrt{150^{2}+3 \times 50^{2}}=173.205 \mathrm{MPa}
\end{aligned}
$$

20. A core cutter of 130 mm height has inner an outer diameters of 100 mm and 106 mm , respectively. The area ratio of the core cutter (in \% up to two decimal places) is \qquad
Key: 12.26
Exp: Area ratio

$$
\begin{aligned}
& =A_{r}=\frac{D_{0}^{2}-D_{i}^{2}}{D_{i}^{2}} \times 100 \%=\frac{106^{2}-100^{2}}{100^{2}} \times 100 \% \\
& \Rightarrow A_{r}=12.36 \%
\end{aligned}
$$

21. Two rectangular under-reinforced concrete beam sections X and Y are similar in all aspects except that the longitudinal compression reinforcement in section Y is 10% more. Which one of the following is the correct statement?
(A) Section X has less flexural strength and is less ductile than section Y
(B) Section X has less flexural strength but is more ductile than section Y
(C) Section X and Y have equal flexural strength but different ductility
(D) Section X and Y have equal flexural strength and ductility

Key: (A)

Exp: As the compression reinforcement in section Y is more than x so the section is under reinforced section \Rightarrow strength is more, and more ductility
22. For routing of flood in a given channel using the Muskingum method, two of the routing coefficients are estimated as $\mathrm{C}_{0}=-0.25$ and $\mathrm{C}_{1}=0.55$. The value of the third coefficient C_{2} would be

Key: 0.7

Exp: In Muskingum method of flood routing
$\mathrm{C}_{0}+\mathrm{C}_{1}+\mathrm{C}_{2}=1$
$\Rightarrow-0.25+0.55+\mathrm{C}_{2}=1$
$\Rightarrow C_{2}=0.7$
23. The deformation in concrete due to sustained loading is
(A) creep
(B) hydration
(C) segregation
(D) shrinkage

Key: (A)
Exp: Deformation in concrete due to sustained loading is called creep
24. Bernoulli's equation is applicable for
(A) viscous and compressible fluid flow
(B) Inviscid and compressible fluid flow
(C) Inviscid and incompressible fluid flow
(D) viscous and incompressible fluid flow.

Key: (C)
Exp: Bernoulli's equation is applicable for ideal fluids i.e for inviscid \& incompressible fluid flow
25. Which one of the following matrices is singular?
(A) $\left[\begin{array}{ll}2 & 5 \\ 1 & 3\end{array}\right]$
(B) $\left[\begin{array}{ll}3 & 2 \\ 2 & 3\end{array}\right]$
(C) $\left[\begin{array}{ll}2 & 4 \\ 3 & 6\end{array}\right]$
(D) $\left[\begin{array}{ll}4 & 3 \\ 6 & 2\end{array}\right]$
© All rights reserved by Thinkcell Learning Solutions Pvt. Ltd. No part of this booklet may be reproduced or utilized in any form without the written permission.

Key: (C)
Exp: A square matrix 'A' is said to be singular if $|\mathrm{A}|=0$
$\left|\begin{array}{ll}2 & 4 \\ 3 & 6\end{array}\right|=12-12=0$
$\Rightarrow\left[\begin{array}{ll}2 & 4 \\ 3 & 6\end{array}\right]$ is singular matrix.
26. Variation of water depth (y) in a gradually varied open channel flow is given by the first order differential equation

$$
\frac{d y}{d x}=\frac{1-e^{-\frac{10}{3} \ln (y)}}{250-45 e^{-3 \ln (y)}}
$$

Given initial condition: $\mathrm{y}(\mathrm{x}=0)=0.8 \mathrm{~m}$. The depth (in m , up to three decimal places) of flow at a downstream section at $\mathrm{x}=1 \mathrm{~m}$ from one calculation step of Single step Euler Method is \qquad
Key: (0.793)
Exp: From Euler method; we have

$$
\mathrm{y}_{1}=\mathrm{y}_{0}+\mathrm{hf}\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right) \rightarrow(1)
$$

Given D.E is $\frac{d y}{d x}=\frac{1-\mathrm{e}^{\frac{-10}{3} \ln (y)}}{250-45 \mathrm{e}^{-3 \ln (y)}} \&$ initial condition $\mathrm{x}_{0}=0 ; \mathrm{y}_{0}=0.8$
The above D.E is of the form $\frac{d y}{d x}=f(x, y)$, where
$f(x, y)=\frac{1-e^{\frac{-10}{3} \ln (y)}}{250-45 e^{-3 / \ln (y)}} \& y \rightarrow$ depth of flow.
\therefore The depth of flow at $\mathrm{x}=1 \mathrm{~m}$ is

$$
y(1)=0.8+1 . f(0,0.8)\left[\because \operatorname{form}(1) h=1 ; x_{0}=0 ; y_{0}=0.8\right]
$$

$$
\begin{aligned}
\Rightarrow \mathrm{y}(1) & =0.8+\frac{1-\mathrm{e}^{\frac{-10}{3} \operatorname{tn}(0.8)}}{250-45 \mathrm{e}^{-3 \ln (0.8)}} \\
& =0.8+\frac{-1.103940125}{162.1093751} \cong 0.793
\end{aligned}
$$

27. An aircraft approaches the threshold of a runway strip at a speed of $200 \mathrm{~km} / \mathrm{h}$. The pilot decelerates the aircraft at a rate of $1.697 \mathrm{~m} / \mathrm{s}^{2}$ and takes 18 s to exit the runway strip. If the deceleration after exiting the runway is $1 \mathrm{~m} / \mathrm{s}^{2}$, then the distance (in m , up to one decimal place) of the gate position from the location of exit on the runway is \qquad

Key: 313

Exp: Let speed of aircraft at the exit of runway be $\mathrm{V} \mathrm{m} / \mathrm{s}$
$\Rightarrow \mathrm{V}=200 \times\left(\frac{5}{18}\right)-1.697 \times 18=25.02 \mathrm{~m} / \mathrm{s}$
velocity at gate position $=0$
$\Rightarrow 0^{2}=(25.02)^{2}-2 \times 1 \times S \Rightarrow S=313 \mathrm{~m}$

28. A water sample analysis data is given below

Ion	Concentration, mg/L	Atomic Weight
Ca^{2+}	60	40
Mg^{2+}	30	24.31
HCO_{3}^{-}	400	61

The carbonate hardness (expressed as mg / L of CaCO_{3}, up to one decimal place) for the water sample is \qquad _.

Key: 273.406
Exp: Total alkalinity $=\left[\right.$ conectration of $\left.\mathrm{HCO}_{3}\right] \times \frac{50}{61}$
$=400 \times \frac{50}{61}=327.86 \mathrm{mg} / \mathrm{L}^{\text {as ca CO }}{ }_{3}$
Total hardness $=\left[\right.$ conc.of $\left.\mathrm{Mg}^{2+}\right] \times \frac{50}{\left(\frac{24.31}{2}\right)}+\left[\right.$ con c .of ca $\left.{ }^{2+}\right] \times \frac{50}{\left(\frac{40}{2}\right)}$
$=30 \times \frac{50 \times 2}{24.31}+60 \times \frac{2 \times 50}{40}=123.406+150=273.406 \mathrm{mg} / 1 \mathrm{as} \mathrm{caco}_{3}$
$\mathrm{TA}>\mathrm{TH} \Rightarrow \mathrm{CH}=\mathrm{TH}$
$\mathrm{NCH}=0$
$\mathrm{CH}=273.406 \mathrm{mg} / 1 \mathrm{as} \mathrm{caco}_{3}$
29. A cylinder of radius 250 mm and weight, $\mathrm{W}=10 \mathrm{kN}$ is rolled up an obstacle of height 50 mm by applying a horizontal force P at its centre as shown in the figure.
All interfaces are assumed frictionless. The minimum value of P is
(A) 4.5 kN
(B) 5.0 kN
(C) 6.0 kN
(D) 7.5 kN

CE-GATE 2018

Key: (D)
Exp:

By Lamis theorem
$\frac{\mathrm{P}}{\sin (90+90-36.86)}=\frac{\mathrm{w}}{\sin (90+36.80)}=\frac{\mathrm{R}}{\sin 90}$
$\mathrm{P}=\frac{\mathrm{w} \cdot \sin (143.14)}{\sin (126.86)}(\mathrm{w}=10 \mathrm{KN})=7.49 \mathrm{KN}$
30. An RCC beam of rectangular cross section has factored shear of 200 kN at its critical section. Its width b is 250 mm and effective depth d is 350 mm . Assume design shear strength τ_{c} of concrete as $0.62 \mathrm{~N} / \mathrm{mm}^{2}$ and maximum allowable shear stress $\tau_{\text {c.max }}$ in concrete as $2.8 \mathrm{~N} / \mathrm{mm}^{2}$. If two legged 10 mm diameter vertical stirrups of Fe 250 grade steel are used, then the required spacing (in cm , up to one decimal place) as per limit state method will be \qquad
Key: 8.2
Exp: $\tau_{c}=0.62 \mathrm{~N} / \mathrm{mm}^{2}$
$\tau_{\mathrm{c}},{ }_{\text {max }}=2.8 \mathrm{~N} / \mathrm{mm}^{2}$
$\tau_{\mathrm{v}}=\frac{\mathrm{V}_{\mathrm{u}}}{\mathrm{bd}}=\frac{200 \times 103}{250 \times 350}=2.286 \mathrm{~N} / \mathrm{mm}^{2}$
$\tau_{\mathrm{cl}} \max =2.8 \mathrm{~N} / \mathrm{mm}^{2}$
$\tau_{\mathrm{v}}<\tau_{\mathrm{c}_{1}} \max \rightarrow$ safe
As per 456-2000

For vertical stirrups to be provided

CE-GATE 2018

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{us}}=0.87 \mathrm{f}_{\mathrm{y}} \cdot \mathrm{~A}_{\mathrm{s} \cdot} \frac{\mathrm{~d}}{\mathrm{~S}_{\mathrm{v}}} \\
& \left(\tau_{\mathrm{v}}-\tau_{\mathrm{c}}\right) \mathrm{bd}=0.87 \mathrm{f}_{\mathrm{y}} \cdot \mathrm{~A}_{\mathrm{sv}} \frac{\mathrm{~d}}{\mathrm{~S}_{\mathrm{v}}} \\
& (2.28-0.62) 250 \times 350=0.87 \times 250 \times 2 \times \frac{\pi}{4} \times 10^{2} \times \frac{350}{\mathrm{~s}_{\mathrm{v}}} \\
& \mathrm{~S}_{\mathrm{v}}=82 \mathrm{~mm}=8.2 \mathrm{~cm}
\end{aligned}
$$

31. A $0.5 \mathrm{~m} \times 0.5 \mathrm{~m}$ square concrete pile is to be driven in a homogeneous clayey soil having undrained shear strength, $\mathrm{c}_{\mathrm{u}}=50 \mathrm{kPa}$ and unit weight, $\gamma=18.0 \mathrm{kN} / \mathrm{m}^{3}$, The design capacity of the pile is 500 kN . The adhesion factor α is given as 0.75 . The length of the pile required for the above design load with a factor of 2.0 is
(A) 5.2 m
(B) 5.8 m
(C) 11.8 m
(D) 12.5 m

Key: (C)
Exp: $\mathrm{Q}_{\mathrm{u}}=\mathrm{Q}_{\mathrm{pu}}+\mathrm{Q}_{\mathrm{pt}}$
$2 \times 500 \mathrm{KN}=\mathrm{A}_{\mathrm{b}} \cdot \mathrm{f}_{\mathrm{b}}+\mathrm{A}_{\mathrm{s}} \mathrm{f}_{\mathrm{s}}$
$100=(0.5 \times 0.5) \times(9 \mathrm{c})+(\propto \mathrm{c}) \mathrm{A}_{\text {surface }}$
$1000=0.5 \times 0.5 \times 9 \times 50+0.75 \times 50 \times 4 \times 0.5 \times \mathrm{L}$
$1000=112.5+75 \mathrm{~L}$
$\mathrm{L}=11.833 \mathrm{~m}$

32. At a construction site, a contractor plans to make an excavation as shown in the figure.

The water level in the adjacent river is at an elevation of +20.0 m . Unit weight of water is $10 \mathrm{kN} / \mathrm{m}^{3}$. The factor of safety (up to two decimal places) against sand boiling for the proposed excavation is
\qquad
Key: (1)
Exp: Uplift pressure due to pore water pressure $=20 \times \gamma_{\mathrm{w}}=200 \mathrm{kN} / \mathrm{m}^{3}$
Total downward pressure at interface of sand and clay after excavation

$$
=10 \times \gamma=10 \times 20=200 \mathrm{kN} / \mathrm{m}^{3}
$$

Factor of safety $=\frac{\text { Total downward pressure }}{\text { uplift pressure }}=\frac{200}{200}=1$

[^3]
CE-GATE 2018

33. A conventional drained triaxial compression test was conducted on a normally consolidated clay sample under an effective confining pressure of 200 kPa . The deviator stress at failure was found to be 400 kPa . An identical specimen of the same clay sample is isotropically consolidated to a confining pressure of 200 kPa and subjected to standard undrained triaxial compression test. If the deviator stress at failure is 150 kPa , the pore pressure developed (in kPa , up to one decimal place) is
\qquad
Key: 125
Exp: For drained
$\sigma_{\mathrm{c}}=200 \mathrm{kPa}, \sigma_{\mathrm{d}}=400 \mathrm{kPa}$
Pore pressure $=0$
$\mathrm{C}=0$
$\sigma_{1}=\sigma_{\mathrm{c}}+\sigma_{\mathrm{d}}=200+400=600 \mathrm{KPa}$
$\sigma_{3}=\sigma_{\mathrm{c}}=200 \mathrm{KPa}$
$\sigma_{1}=\sigma_{3} \tan ^{2}\left(45 \frac{\phi}{2}\right)$
$600=200 \tan ^{2}\left(45+\frac{\phi}{2}\right)$
$\phi=30$
For un drained
$\sigma_{\mathrm{c}}=200 \mathrm{kPa}, \sigma_{\mathrm{d}}=150 \mathrm{kPa}$
$\bar{\sigma}_{1}=\bar{\sigma}_{\mathrm{c}}+\bar{\sigma}_{\mathrm{d}}=200+150=350$
$\bar{\sigma}_{1}=350-\mathrm{u}$
$\sigma_{3}=\sigma_{\mathrm{c}}-\mathrm{u}=200-\mathrm{u} \Rightarrow \bar{\sigma}_{1}=\bar{\sigma}_{3} \tan ^{2}\left(45+\frac{\phi}{2}\right)$
$(350-u)=(200-u) \tan ^{2}\left(457 \frac{30}{2}\right)$
$350-u=600-3 u$
$3 u-u=600-350$
$\mathrm{u}=\frac{250}{2}=125 \mathrm{KPa}$
34. The solution (up to three decimal places) at $x=1$ of the differential equation $\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}+y=0$ subject to boundary conditions $y(0)=1$ and $\frac{d y}{d x}(0)=-1$ is \qquad
Key: 0.368
Exp: Given D.E is

$$
\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}+y=0
$$

$\Rightarrow\left(D^{2}+2 \mathrm{D}+1\right) \mathrm{y}=0 \Rightarrow(\mathrm{D}+1)^{2} \mathrm{y}=0 \rightarrow(1)$
\therefore The auxilary equation is

$$
\begin{gathered}
\quad(\mathrm{m}+1)^{2}=0 \\
\Rightarrow \mathrm{~m}=-1,-1[\text { Real \& Repeated }]
\end{gathered}
$$

The complementary function (C.F)

$$
\begin{aligned}
y_{c}= & e^{-x}\left[c_{1}+c_{2} x\right] \\
& \&
\end{aligned}
$$

$\therefore \mathrm{y}_{\mathrm{p}}=0$ [particular integral]
\therefore The complete solution of (1) is
$y=e^{-x}\left[c_{1}+c_{2} x\right] \rightarrow(2)$
Given that $\mathrm{y}(0)=1$
from $(1) \Rightarrow 1=c_{1}+0 \Rightarrow c_{1}=1$
$\frac{d y}{d x}=-e^{-x}\left[c_{1}+c_{2} x\right]+e^{-x}\left[c_{2}\right]$
Given $\frac{d y}{d x}=-1$ at $x=0$
$-1=-[1+0]+1\left[c_{2}\right] \Rightarrow c_{2}=0$
$\therefore \mathrm{y}=\mathrm{e}^{-\mathrm{x}}[1+0]=\mathrm{e}^{-\mathrm{x}} \Rightarrow \mathrm{y}(1)=\mathrm{e}^{-1} \simeq 0.368$

II method:

Given D.E is $\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}+y=0$
$\Rightarrow y^{\prime \prime}+2 y^{\prime}+\mathrm{y}=0$
using L.T on both sides;

$$
\begin{aligned}
& \mathrm{L}\left[\mathrm{y}^{\prime \prime}\right]+2 \mathrm{~L}\left[\mathrm{y}^{\prime}\right]+\mathrm{L}[\mathrm{y}]=0 \\
& \Rightarrow \mathrm{~s}^{2} \mathrm{~L}[\mathrm{y}(\mathrm{x})]-\mathrm{sy}(0)-\mathrm{y}^{\prime}(0)+2[\mathrm{SL}[\mathrm{y}(\mathrm{x})]-\mathrm{y}(0)]+\mathrm{L}[\mathrm{y}]=0 \\
& \Rightarrow\left(\mathrm{~s}^{2}+2 \mathrm{~s}+1\right) \mathrm{L}[\mathrm{y}(\mathrm{x})]-\mathrm{s}(1)-(-1)-2(1)=0 \\
& {\left[\because \mathrm{y}(0)=1 \& \mathrm{y}^{\prime}(0)=-1\right]} \\
& \Rightarrow\left(\mathrm{s}^{2}+2 \mathrm{~s}+1\right) \mathrm{L}[\mathrm{y}(\mathrm{x})]=1+\mathrm{s} \\
& \Rightarrow \mathrm{~L}[\mathrm{y}(\mathrm{x})]=\frac{1+\mathrm{s}}{\mathrm{~s}^{2}+2 \mathrm{~s}+1}=\frac{1+\mathrm{s}}{(1+\mathrm{s})^{2}}=\frac{1}{1+\mathrm{s}}
\end{aligned}
$$

applying inverse L.T;

$$
y(x)=L^{-1}\left[\frac{1}{s+1}\right]=e^{-x} \Rightarrow y(1)=e^{-1} \simeq 0.368
$$

CE-GATE 2018

35. Rainfall depth over a watershed is monitored through six number of well distributed rain gauges. Gauged data are given below.

Rain Gauge Number	1	2	3	4	5	6
Rainfall Depth (mm)	470	465	435	525	480	510
Area of Thiessen Polygon $\left(\times 10^{4} \mathrm{~m}^{2}\right)$	95	100	98	80	85	92

The Thiessen mean value (in mm, up to one decimal place) of the rainfall is \qquad
Key: 479.1
Exp: Thiessen's mean value $=\frac{\sum_{i=1}^{6} P_{i} A_{i}}{\sum A_{i}}$

$$
\left.\begin{array}{l}
=\left[\begin{array}{l}
(470 \times 95)+(465 \times 100)+(435 \times 98)+(525 \times 80) \\
+(480 \times 85)+(510 \times 92)
\end{array}\right. \\
(95+100+98+80+85+92) \times 10^{4}
\end{array}\right]=\frac{263,500 \times 10^{4}}{550 \times 10^{4}}=479.1 \mathrm{~mm}
$$

36. The dimensions of a symmetrical welded I-section are shown in the figure.

(All dimensions are in mm)
The plastic section modulus about the weaker axis (in cm^{3}, up to one decimal place) is
\qquad .
Key: 89.9
Exp: weaker axis is y-axis, because $I_{y y}<I_{x x}$
$Z_{p}=\frac{A}{Z}\left(\bar{y},+\bar{y}_{2}\right)$
$\mathrm{A}=(140 \times 9) \times 2+6.1 \times(200-2 \times 9)$
$=3630.2 \mathrm{~mm}^{2}$

Due to symetry $\bar{y}_{1}=\bar{y}_{2}=$ Distance of centroid of compression/ tension region form eaqual area axis equal area axis is vertical y-axis passes form centroid of I section as shown.

$$
\begin{aligned}
& \Rightarrow \bar{y}_{1}=\frac{(70 \times 9) \times\left(\frac{70}{2}\right)+\frac{6.1}{2} \times(200-2 \times 9) \times \frac{6.1}{4}+(70 \times 9) \times\left(\frac{70}{2}\right)}{(70 \times 9)+\frac{6.1}{2} \times(200-18)+(70 \times 9)} \\
& =\frac{44946.52}{1815.1} \\
& =24.76 \mathrm{~mm} \\
& \Rightarrow \mathrm{Z}_{\mathrm{p}}=\frac{3630.2}{2}[24.76+24.76] \\
& =89883.75 \mathrm{~mm}^{3} \\
& \mathrm{z}_{\mathrm{p}} \simeq 89.9 \mathrm{~cm}^{3}
\end{aligned}
$$

37. A rigid smooth retaining wall of height 7 m with vertical backface retains saturated clay as backfill. The saturated unit weight and undrained cohesion of the backfill are $17.2 \mathrm{kN} / \mathrm{m}^{3}$ and 20 kPa , respectively. The difference in the active lateral forces on the wall (in kN per meter length of wall, up to two decimal places), before and after the occurrence of tension cracks is \qquad .
Key: 46.52
Exp:

$$
\begin{aligned}
& \text { clay } \Rightarrow \phi=0 \\
& \gamma=17.2 \mathrm{KN} / \mathrm{m}^{3} \quad \mathrm{k}_{\mathrm{a}}=\frac{1-\sin 0}{1+\sin 0}=1 \\
& \mathrm{C}=20 \mathrm{KPa}
\end{aligned}
$$

Before occurrence of tension crack

$$
\mathrm{z}_{\mathrm{c}}=\frac{2 \mathrm{C}}{\gamma \sqrt{\mathrm{k}_{\mathrm{a}}}}=\frac{2 \times 20}{17.2 \sqrt{1}}=2.32 \mathrm{~m}
$$

Before formation of tension crack

$$
\mathrm{k}_{\mathrm{a}} \gamma \mathrm{H}-2 \mathrm{c} \sqrt{\mathrm{k}_{\mathrm{a}}}=1 \times 17.2 \times 7-2 \times 20=80.4 \mathrm{kPa}
$$

$$
\mathrm{F}_{\mathrm{a}}=\frac{1}{2} \mathrm{k}_{\mathrm{a}} \gamma \mathrm{H}^{2}-2 \mathrm{c} \sqrt{\mathrm{k}_{\mathrm{a}}} \mathrm{H}=\frac{1}{2} \times 1 \times 17.2 \times 7^{2}-2 \times 20 \sqrt{1} \times 7=141.4 \mathrm{kN} / \mathrm{m}
$$

After formation of tension crack

$$
\begin{aligned}
\mathrm{F}_{\mathrm{a}}=\mathrm{k}_{\mathrm{a}} \gamma \frac{\mathrm{H}^{2}}{2}-2 \mathrm{c} \sqrt{\mathrm{k}_{\mathrm{a}}} \mathrm{H}+\frac{2 \mathrm{c}^{2}}{\gamma} & =1 \times 17.2 \times \frac{7^{2}}{2}-2 \times 20 \times \sqrt{1} \times 7+2 \times \frac{20^{2}}{17.2} \\
& =421.4-280+46.52 \\
& =187.92 \mathrm{kN} / \mathrm{m} \\
\text { difference }=187.92-141.4= & 46.52 \mathrm{kN} / \mathrm{m}
\end{aligned}
$$

38. A waste activated sludge (WAS) is to be blended with green waste (GW). The carbon (C) and nitrogen (N) contents. per kg of WAS and GW, on dry basis are given in the table.

Parameter	WAS	GW
Carbon (g)	54	360
Nitrogen (g)	10	6

The ratio of WAS to GW required (up to two decimal places) to achieve a blended C:N ratio of 20:1 on dry basis is \qquad
Key: 1.643
Exp: Let $\frac{\text { WAS }}{\text { GW }}$ be x
Assume 1 kg of $\mathrm{GW} \Rightarrow \mathrm{WAS}=\mathrm{x} \mathrm{kg}$
\therefore Total carbon (c)in WAS \& GW $=360+54 \mathrm{x}$ grams
Similarly Total nitrogen (N) in WAS \& $4 w=6+10 x \mathrm{gm}$
$\therefore \frac{\mathrm{C}}{\mathrm{N}}=\frac{20}{1}$
$\Rightarrow \frac{360+54 \mathrm{x}}{6+10 \mathrm{x}}=\frac{20}{1}$
$\Rightarrow 360+54 \mathrm{x}=120+200 \mathrm{x}$
$\Rightarrow \mathrm{x}=\frac{\mathrm{WAS}}{\mathrm{GW}}=1.643$
39. The infiltration rate f in a basin under ponding condition is given by $f=30+10 e^{-2 t}$, where, f is in mm / h and t is time in hour. Total depth of infiltration (in mm, up to one decimal place) during the last 20 minutes of a storm of 30 minutes duration is \qquad .
Key: 11.74
Exp: Total infiltration in last 20 minutes of 30 minutes storm
i.e form $\frac{10}{60} \mathrm{hr}$ to $\frac{30}{60} \mathrm{hr}$
1.667hrs to 0.5 hr

$$
\int_{1.667}^{0.5}\left(30+10 . \mathrm{e}^{-2 \mathrm{t}}\right) \mathrm{dt}=30 \mathrm{t}+\left.10 \frac{\mathrm{e}^{-2 \mathrm{t}}}{-2}\right|_{1.667} ^{0.5}=11.74 \mathrm{~mm}
$$

40. In laboratory, a flow experiment is performed over a hydraulic structure. The measured values of discharge and velocity are $0.05 \mathrm{~m}^{3} / \mathrm{s}$ and $0.25 \mathrm{~m} / \mathrm{s}$, respectively. If the full scale structure (30 times bigger) is subjected to a discharge of $270 \mathrm{~m}^{3} / \mathrm{s}$, then the time scale (model to full scale) value (up to two decimal places) is \qquad
Key: 0.2
Exp: Given model values as
$\mathrm{Q}_{\mathrm{m}}=0.05 \mathrm{~m}^{3} / \mathrm{s} ; \mathrm{V}_{\mathrm{m}}=0.25 \mathrm{~m} / \mathrm{s}$
$\Rightarrow \mathrm{Q}_{\mathrm{m}}=\mathrm{V}_{\mathrm{m}} \mathrm{x}\left(\mathrm{L}_{\mathrm{m}}\right)^{2} \Rightarrow \mathrm{~L}_{\mathrm{m}}^{2}=\frac{0.05}{0.25}=0.2 \mathrm{~m}^{2}$
Given $\frac{L_{m}}{L_{p}}=\frac{1}{30}\left[\right.$ Pr ototype is full scale strcture having $\left.L_{p}=30 L_{m}\right]$
$\Rightarrow \mathrm{L}_{\mathrm{p}}^{2}=30^{2} \times 0.2[$ Suffix ' p ' denetes prototype values $]=180 \mathrm{~m}^{2}$
$\Rightarrow \mathrm{V}_{\mathrm{P}}=\frac{\mathrm{Q}_{\mathrm{p}}}{\mathrm{Lp}^{2}}=\frac{270}{180 \mathrm{~m}^{2}} \mathrm{~m}^{3} / \mathrm{s}=15 . \mathrm{m} / \mathrm{s}$
\Rightarrow Time scale $=T_{\gamma}=\frac{T_{m}}{T_{p}}=\frac{L_{m} / V_{m}}{L_{p} / V_{p}}=\frac{L_{m} V_{p}}{L_{p} V_{m}}$
\Rightarrow Time scale (mod el to full scale)
$=\left(\frac{1}{30}\right) \times\left(\frac{1.5}{0.25}\right)=0.2$
41. A plate in equilibrium is subjected to uniform stresses along its edges with magnitude $\sigma_{\mathrm{xx}}=30 \mathrm{MPa}$ and $\sigma_{\mathrm{yy}}=50 \mathrm{MPa}$ as shown in the figure.

The Young's modulus of the material is $2 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}$ and the Poisson's ratio is 0.3 if $\sigma_{z z}$ is negligibly small and assumed to be zero. Then the strain $\varepsilon_{z z}$ is
(A) -120×10^{-6}
(B) -60×10^{-6}
(C) 0.0
(D) 120×10^{-6}

CE-GATE 2018

Key: (A)
Exp: $\quad \varepsilon_{z}=\frac{\sigma_{z}-\mu \sigma_{x}-\mu \sigma_{y}}{E}$

$$
=\frac{(0-0.3 \times 30-0.3 \times 50) \mathrm{N} / \mathrm{mm}^{2}}{2 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}}=-\frac{12 \times 10^{6}}{10^{11}}=-120 \times 10^{-6}
$$

42. An RCC short column (with lateral ties) of rectangular cross section of $250 \mathrm{~mm} \times 300 \mathrm{~mm}$ is reinforced with four numbers of 16 mm diameter longitudinal bars. The grades of steel and concrete are Fe415 and M20, respectively. Neglect eccentricity effect. Considering limit state of collapse in compression (IS 456:2000), the axial load carrying capacity of the column (in kN , up to one decimal place), is \qquad _.
Key: 917.96
Exp: Neglecting electricity effect, column can be assumed as concentrically loaded
Accordinge to IS 456:200; axial load carrying capacity for concentrically loaded column is
$\mathrm{P}_{\mathrm{u}}=0.45 \mathrm{f}_{\text {ck }} \mathrm{Ag}+\left(0.75 f_{\mathrm{y}}-0.45 \mathrm{f}_{\text {ck }}\right) \mathrm{A}_{\mathrm{sc}}$
$=[0.45 \times 20 \times 250 \times 300]+[0.75 \times 415-0.45 \times 20] \times 4 \times \frac{\pi}{4} \times 16^{2}$
$\mathrm{P}_{\mathrm{u}}=917.96 \mathrm{KN}$
43. Consider the deformable pin-jointed truss with loading, geometry and section properties as shown in the figure.

Given that $\mathrm{E}=2 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}, \mathrm{~A}=10 \mathrm{~mm}^{2}, \mathrm{~L}=1 \mathrm{~m}$ and $\mathrm{P}=1 \mathrm{kN}$. The horizontal displacement of joint C (in mm, up to one decimal place) is \qquad
Key: 2.707
Exp:

© All rights reserved by Thinkcell Learning Solutions Pvt. Ltd. No part of this booklet may be reproduced or utilized in any form without the written permission.
$\left.\Delta_{\mathrm{c}}\right]$ horizontal $=\Sigma \frac{\mathrm{P}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}} \mathrm{L}}{\mathrm{AE}}$

Calculation of P

Calculation of u

Applying 1 unit load in horizontal direction at C .
$\Rightarrow \Delta_{\mathrm{C}}=\frac{(\sqrt{2} \mathrm{P})(\sqrt{2}) \sqrt{2} \mathrm{~L}}{2 \mathrm{AE}}+\frac{(3 \mathrm{P})(1) \times \mathrm{L}}{\mathrm{AE}}+\frac{(\mathrm{P})(1)(\mathrm{L})}{\mathrm{AE}}$
$\left.\Rightarrow \Delta_{\mathrm{C}}\right]_{\text {horizontal }}=\frac{\mathrm{PL}}{\mathrm{AE}}(4+\sqrt{2})=\frac{(1000)(1)(4+1.414) \times 1000}{10 \times 2 \times 10^{11} / 10^{6}}$
$\left.\Delta_{\mathrm{C}}\right]_{\text {horizontal }}=2.707 \mathrm{~mm}$
44. The figure shows a simply supported beam PQ of uniform flexural rigidity EI carrying two moments M and 2 M .

The slope at P will be
(A) 0
(B) $\mathrm{ML} /(9 \mathrm{EI})$
(C) $\mathrm{ML} /(6 \mathrm{EI})$
(D) $\mathrm{ML} /(3 \mathrm{EI})$

Key: (C)
Exp:

$$
\begin{aligned}
\Sigma \mathrm{Q}=0 & \Rightarrow \mathrm{R} \times \mathrm{L}-\mathrm{M}-2 \mathrm{M}=0 \\
& \Rightarrow \mathrm{R}=3 \mathrm{M} / \mathrm{L}
\end{aligned}
$$

Slope at $\mathrm{P}=\mathrm{S} . \mathrm{F}$ at P of conjugate beam $=\mathrm{R}$

$$
\begin{aligned}
\Rightarrow & \Sigma \mathrm{M}_{\mathrm{Q}}=0 \\
\Rightarrow & \mathrm{R} \times(\mathrm{L})-\left(\frac{\mathrm{M}}{\mathrm{EI}}\right) \times \frac{1}{2} \times \mathrm{L} / 3 \times\left[\frac{2 \mathrm{~L}}{3}+\frac{\mathrm{L}}{9}\right]+\left(\frac{\mathrm{ML}}{\mathrm{EI}}\right) \times \frac{1}{2} \times \frac{\mathrm{L}}{3}[\mathrm{~L} / 3+\mathrm{L} / 9] \\
& +\left(\frac{\mathrm{ML}}{\mathrm{EI}}\right) \times \frac{1}{2} \times \frac{\mathrm{L}}{3}[2 \mathrm{~L} / 9] \\
\Rightarrow & \mathrm{RL}-\frac{7 \mathrm{ML}}{54 \mathrm{EI}}-\frac{4 \mathrm{ML}}{54 \mathrm{EI}}+\frac{2 \mathrm{ML}}{54 \mathrm{EI}}=0 \\
\Rightarrow & \mathrm{R}=\frac{\mathrm{ML}}{6 \mathrm{EI}}=\text { slope at } \mathrm{P}
\end{aligned}
$$

45. The solution at $\mathrm{x}=1, \mathrm{t}=1$ of the partial differential equation $\frac{\partial^{2} \mathrm{u}}{\partial \mathrm{x}^{2}}=25 \frac{\partial^{2} \mathrm{u}}{\partial \mathrm{t}^{2}}$ subject to initial conditions of $u(0)=3 x$ and $\frac{\partial u}{\partial t}(0)=3$ is \qquad
(A) 1
(B) 2
(C) 4
(D) 6

Key: (D)
Exp: By D'Alembert's formula
Solution to IVP for wave equation
$\mathrm{u}_{\mathrm{tt}}=\mathrm{C}^{2} \mathrm{U}_{\mathrm{xx}}$
$u(x, 0)=f(x)$
$u_{t}(x, 0)=g(x)$
is $u(x, t)=\frac{1}{2}[f(x+c t)+f(x-c t)]+\frac{1}{2 c} \int_{x-c t}^{x+c t} g(s) d s-(1)$
Given $\mathrm{f}(\mathrm{x})=3 \mathrm{x}$

$$
\begin{aligned}
g(x)=3 & \& c^{2}=\frac{1}{25} \\
\text { from }(1) \mathrm{u}(\mathrm{x}, \mathrm{t}) & =\frac{1}{2}\left[3\left(\mathrm{x}+\frac{\mathrm{t}}{5}\right)+3\left(\mathrm{x}-\frac{\mathrm{t}}{5}\right)\right]+\frac{1}{2\left(\frac{1}{5}\right)} \int_{\mathrm{x}-\frac{\mathrm{t}}{5}}^{\mathrm{x}+\frac{\mathrm{t}}{5}} 3 \mathrm{ds} \\
& =3 \mathrm{x}+3 \mathrm{t} \\
\text { At } \mathrm{x} & =1, \mathrm{t}=1 ; \mathrm{u}(\mathrm{x}, \mathrm{t})=6 .
\end{aligned}
$$

46. A square area (on the surface of the earth) with side 100 m and uniform height, appears as $1 \mathrm{~cm}^{2}$ on a vertical aerial photograph. The topographic map shows that a contour of 650 m passes through the area. IF focal length of the camera lens is 150 mm , the height from which the aerial photograph was taken, is
(A) 800 m
(B) 1500 m
(C) 2150 m
(D) 3150 m

Key: C

Exp: Elevation of square area from datum $=$ control value $=650 \mathrm{~m}$
Scale of photograph $=\frac{1 \mathrm{~cm}}{100 \mathrm{~m}}=\frac{1}{10000}$

$$
\begin{aligned}
& \Rightarrow S=\frac{\mathrm{f}}{\mathrm{H}-\mathrm{h}} \\
& \Rightarrow \frac{1}{10,000}=\frac{150 \mathrm{~mm}}{\mathrm{H}-650 \mathrm{~m}} \\
& \Rightarrow \mathrm{H}-650=0.150 \times 10,000 \\
& \Rightarrow \mathrm{H}-650=0.150 \times 10,000 \\
& \Rightarrow \mathrm{H}=1500+650 \\
& \Rightarrow \mathrm{H}=2,150 \mathrm{~m}
\end{aligned}
$$

CE-GATE 2018

47. A cantilever beam of length 2 m with a square section of side length 0.1 m is loaded vertically at the free end. The vertical displacement at the free end is 5 mm . The beam is made of steel with Young's modulus of $2.0 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}$. The maximum bending stress at the fixed end of the cantilever is
(A) 20.0 MPa
(B) 37.5 MPa
(C) 60.0 MPa
(D) 75.0 MPa

Key: (B)
Exp: Given Δ max at free end $=5 \mathrm{~mm}$
Also, $\Delta_{\text {max }}$ at free end $=\frac{\mathrm{Pl}^{3}}{3 \cdot \mathrm{EI}}$

$$
\Rightarrow 0.005=\frac{\mathrm{P}(2)^{3}}{3 . \mathrm{EI}} \Rightarrow \mathrm{P}=1.875 \times 10^{-3} \mathrm{EI}\left[\mathrm{I}=\frac{(0.1)^{4}}{12}\right]
$$

Max bending stress at fixed end $=\frac{M}{Z}=\frac{6 M}{b . d^{2}} \quad\left[\begin{array}{l}\mathrm{b}=\mathrm{d}=0.1 \mathrm{~m} \\ \mathrm{M}=\mathrm{P} \times 2=2 \mathrm{P}\end{array}\right]$

$$
\begin{aligned}
& =\frac{6 \times 2 \mathrm{P}}{(0.1)^{3}} \\
& =\frac{12}{0.001} \times 1.875 \times 10^{-3} \times 2 \times 10^{11} \times \frac{(0.1)^{4}}{12}=37.5 \mathrm{MPa}
\end{aligned}
$$

48. The value of the integral $\int_{0}^{\pi} x \cos ^{2} x d x$ is
(A) $\pi^{2} / 8$
(B) $\pi^{2} / 4$
(C) $\pi^{2} / 2$
(D) π^{2}

Exp:

we know that
$\int_{a}^{b} x f(x) \cdot d x=\frac{b-a}{2} \int_{a}^{b} f(x)$. $d x$ if $f(a+b-x)=f(x)$
Let $f(x)=\cos ^{2} x$

$$
\Rightarrow \mathrm{f}(\pi-\mathrm{x})=\cos ^{2}(\pi-\mathrm{x})=\cos ^{2} \mathrm{x}=\mathrm{f}(\mathrm{x})
$$

$$
\therefore \int_{0}^{\pi} x \cos ^{2} x d x=\frac{\pi}{2} \int_{0}^{\pi} \cos ^{2} x d x
$$

$$
=\frac{\pi}{2} \int_{0}^{\pi}\left[\frac{1+\cos 2 x}{2}\right] \mathrm{dx} \quad\left[\begin{array}{c}
\therefore \cos 2 \theta=2 \cos ^{2} \theta-1 \\
\cos ^{2} \theta=\frac{1+\cos 2 \theta}{2}
\end{array}\right]
$$

$$
=\frac{\pi}{4}\left[x+\frac{\sin 2 x}{2}\right]_{0}^{\pi}
$$

$$
=\frac{\pi}{4}\{(\pi+0)-(0+0)\}=\frac{\pi}{4}(\pi)=\frac{\pi^{2}}{4}
$$

CE-GATE 2018

$$
\int_{0}^{\pi} x \cos ^{2} x d x=\frac{\pi^{2}}{4}
$$

Method II

$$
\begin{aligned}
& \int_{0}^{\pi} x \cos ^{2} x d x=\int_{0}^{\pi} x\left[\frac{1+\cos 2 x}{2}\right] d x \quad\left[\begin{array}{l}
\therefore \cos 2 \theta=2 \cos ^{2} \theta-1 \\
\left.\cos ^{2} \theta=\frac{1+\cos 2 \theta}{2}\right] \\
\end{array}\right. \\
&=\int_{0}^{\pi}\left[\frac{x}{2}+\frac{x \cos 2 x}{2}\right] d x \\
&=\frac{1}{2}\left\{\frac{x^{2}}{2}+x \frac{\sin 2 x}{2}+\frac{1}{4} \cos 2 x\right\}_{0}^{\pi} \\
&=\frac{1}{2}\left\{\left[\frac{\pi^{2}}{2}+0+\frac{1}{4}\right]-\left[0+0+\frac{1}{4}\right]\right\} \\
&=\frac{1}{2}\left\{\frac{\pi^{2}}{2}+\frac{1}{4}-\frac{1}{4}\right\}=\frac{\pi^{2}}{4}
\end{aligned}
$$

49. The void ratio of a soil is 0.55 at an effective normal stress of 140 kPa . The compression index of the soil is 0.25 . In order to reduce the void ratio to 0.4 , an increase in the magnitude of effective normal stress (in kPa , up to one decimal place) should be \qquad
Key: 417.37
Exp: Given

$$
\begin{aligned}
\mathrm{e}_{1}=0.55 ; \sigma_{1} & =140 \mathrm{kPa} \\
\mathrm{e}_{2}=0.4 ; \sigma_{2} & =? \\
\mathrm{C}_{\mathrm{c}}=\frac{\Delta \mathrm{e}}{\log \left(\frac{\sigma_{2}}{\sigma_{1}}\right)} & \Rightarrow 0.25=\frac{0.55-0.4}{\log \left(\frac{\sigma_{2}}{140}\right)} \\
& \Rightarrow \sigma_{2}=557.35 \mathrm{kN}
\end{aligned}
$$

Increase in magnitude of stress $=\Delta \sigma=\sigma_{2}-\sigma_{1}=557.35-140$

$$
\Delta \sigma=417.35 \mathrm{kPa}
$$

50. A closed tank contains 0.5 m thick layer of mercury (specific gravity=13.6) at the bottom. A 2.0 m thick layer of water lies above the mercury layer. A 3.0 m thick layer of oil (specific gravity=0.6) lies above the water layer. The space above the oil layer contains air under pressure. The gauge pressure at the bottom of the tank is $196.2 \mathrm{kN} / \mathrm{m}^{2}$. The density of water is $1000 \mathrm{~kg} / \mathrm{m}^{3}$ and the acceleration due to gravity is $9.81 \mathrm{~m} / \mathrm{s}^{2}$. The value of pressure in the air space is
(A) $92.214 \mathrm{kN} / \mathrm{m}^{2}$
(B) $95.644 \mathrm{kN} / \mathrm{m}^{2}$
(C) $98.922 \mathrm{kN} / \mathrm{m}^{2}$
(D) $99.321 \mathrm{kN} / \mathrm{m}^{2}$

Key: (A)
Exp: Pressure at bottom (guage)
$=P_{\text {air (gauge) }}+0.6 \times 3 \times \gamma_{w}+1 \times 2 \times \gamma_{w}+13.6 \times 0.5 \times \gamma_{w}$
$=10.6 \gamma_{w}+P_{\text {air (guage) }}$
$\Rightarrow 196.2=10.6 \times 1000 \times 9.81 \times 10^{-3}+\mathrm{P}_{\text {air (guage) }}$
$\Rightarrow \mathrm{P}_{\text {air (guage) }}=92.214 \mathrm{kN} / \mathrm{m}^{2}$

Pair (gauge)	$\uparrow 3 \mathrm{~m}$
Oil	
water	2 m
Hg	0.5m

51. The following details refer to a closed traverse:

Line	Consecutive Coordinate			
	Northing (m)	Southing (m)	Easting (m)	Westing (m)

QR	101	437	173	----
RS	419	-----	558	-----
SP	------	83	----	96

The length and direction (Whole circle bearing) of closure, respectively are
(A) 1 m and 90°
(B) 2 m and 90°
(C) 1 m and 270°
(D) 2 m and 270°

Key: (A)
Exp: For closed traverse
Latitude $(\Sigma \mathrm{L})=\Sigma \mathrm{N}-\Sigma \mathrm{S}=(101+419)-(437+83)=520-520=0$
$\operatorname{Departure}(\Sigma \mathrm{D})=\Sigma \mathrm{E}-\Sigma \mathrm{W}=(173+558)-(96+634)=731-730=1$
$\mathrm{L}=\sqrt{(\Sigma \mathrm{L})^{2}(\Sigma \mathrm{D})^{2}}=\sqrt{0^{2}+1^{2}}=1$
$\theta=\tan ^{-1}\left(\frac{\Sigma \mathrm{D}}{\Sigma \mathrm{L}}\right)$
$\theta=90^{\circ}$ or 270°
52. Given the following data: design life $n=15$ years, lane distribution factor $D=0.75$. annual rate of growth of commercial vehicles $\mathrm{r}=6 \%$. Vehicle damage factor $\mathrm{F}=4$ and initial traffic in the year of completion of construction $=3000$ commercial Vehicles Per Day (CVPD). As per IRC:37-2012, the design traffic in terms of cumulative number of standard axles (in million standard axles, up to two decimal places) is \qquad —.

CE-GATE 2018

Key: 76.46
Exp: C.M.S.A $=\left[\frac{365 \mathrm{~A}\left((1+\mathrm{r})^{\mathrm{n}}-1\right)}{\mathrm{r}} \times \mathrm{LDF} \times \mathrm{VDF}\right] \times 10^{-6}$
LDF $=$ Lane distribution factor $=0.75$
$\mathrm{VDF}=$ Vehicle Damage factor $=4$
A=Initial traffic in the year of completion of construction=3000
$\mathrm{n}=15$ year
r=6\%

$$
\begin{aligned}
\Rightarrow \text { C.M.S.A } & =\frac{365\left((1+0.06)^{15}-1\right)}{0.06} \times 3000 \times 4 \times 0.75 \times 10^{-6} \\
& =76.4615 \mathrm{MSA}
\end{aligned}
$$

53. A priority intersection has a single lane one way traffic road crossing an undivided two lane two way traffic road. The traffic stream speed on the single lane road is 20 kmph and speed on the two lane road is 50 kmph . The perception-reaction time is 2.5 s , coefficient of longitudinal friction is 0.38 and acceleration due to gravity is $9.81 \mathrm{~m} / \mathrm{s}^{2}$. A clear sight triangle has to be ensured at this intersection. The minimum lengths of the sides of the sight triangle along the two lane road and the single lane road, respectively will be
(A) 50 m and 20 m
(B) 61 m and 18 m
(C) 111 m and 15 m
(D) 122 m and 36 m

Key: (B)
Exp:

$\operatorname{SSD}_{1}=$ v. $\mathrm{t}_{\mathrm{r}}+\frac{\mathrm{v}^{2}}{2 \mathrm{~g} \mu}=\left(20 \times \frac{5}{18}\right) \times 2.5+\frac{\left(20 \times \frac{5}{18}\right)^{2}}{2 \times 9.81 \times 0.38}=13.89+4.139=18 \mathrm{~m}$
$\mathrm{SSD}_{2}=$ v.t. $\mathrm{t}_{\mathrm{r}}+\frac{\mathrm{v}^{2}}{2 \mathrm{~g} \mu}=\left(50 \times \frac{5}{18}\right) \times 2.5+\frac{\left(50 \times \frac{50}{18}\right)^{2}}{2 \times 9.81 \times 0.38}$
$=34.72+25.87=60.59 \cong 61 \mathrm{~m}$
54. The ultimate BOD (L_{0}) of a wastewater sample is estimated as 87% of COD. The COD of this wastewater is $300 \mathrm{mg} / \mathrm{L}$. Considering first order BOD reaction rate constant k (use natural Log) $=$ 0.23 per day and temperature coefficient $\theta=1.047$, the BOD value (in mg / L, up to one decimal place) after three days of incubation at $27^{\circ} \mathrm{C}$ for this wastewater will be \qquad
Key: $\mathbf{1 6 0 . 2 2}$
Exp: $k=0.23 /$ day (natural log)-at temp $=20^{\circ} \mathrm{C}$

$$
\begin{aligned}
& \mathrm{k}_{\left(\mathrm{T}^{\circ} \mathrm{C}\right)}=\mathrm{k}_{\left(20^{\circ} \mathrm{C}\right)}[1.047]^{\mathrm{T}-20^{\circ} \mathrm{C}} \\
& \Rightarrow \mathrm{k}_{\left(27^{\circ} \mathrm{C}\right)}=0.23[1.047]^{27-20}=0.3172 / \text { day } \\
& \text { ultimate BOD }=0.87 \times 300=261 \mathrm{mg} / \mathrm{L} \\
& \text { BODfor } 3 \text { days }=261\left(1-\mathrm{e}^{-\mathrm{k} \times 3}\right)=261\left(1-\mathrm{e}^{-0.3172 \times 3}\right)=160.22 \mathrm{mg} / \mathrm{L}
\end{aligned}
$$

55. A rapid sand filter comprising a number of filter beds is required to produce 99MLD of potable water. Consider water loss during backwashing as 5%, rate of filtration as $6.0 \mathrm{~m} / \mathrm{h}$ and length to width ratio of filter bed as 1.35 . The width of each filter bed is to be kept equal to 5.2 m . One additional filter bed is to be provided to take care of break-down, repair and maintenance. The total number of filter beds required will be
(A) 19
(B) 20
(C) 21
(D) 22

Key: (C)
Exp: Total Volume of water required to be filtered
Including backwashing water $=99+0.05 \times 99=103.95$ MLD
Area of each filter $=\mathrm{L} \times \mathrm{B}=(1.35 \times 5.2) \times 5.2=36.504 \mathrm{~m}^{2}$
\Rightarrow Volume of water filtered in 1 hour $=6 \times 36.504$

$$
=219.024 \mathrm{~m}^{3}
$$

\Rightarrow Volume of water filtered in 1day $=\frac{219.024 \times 24 \times 10^{3}}{10^{6}}$ MLD
\Rightarrow No.of filter beds required $=\frac{103.95}{5.256}=19.77$
Total no.of filter bed required=19.77+1

$$
\begin{aligned}
& =20.77 \\
& \simeq 21
\end{aligned}
$$

What Next after GATE? IIT|PSU|M.Tech

Evaluate your GATE performance with key and explanation available at www.gateforum.com

After applying for all eligible courses and jobs, prepare for written tests and Interviews

Follow the latest notifications from IITs, NITs and PSUs and be ready with required documents.

Keep your options open by applying to Private universities, Government and Private jobs recruiting without GATE

Online Post GATE guidance session by GATEFORUM Experts

To know more visit www.gateforum.com

Our Offerings for GATE 19/20

Our Network

Agartala 9856034530 |Agra 9760012902 | Ahmedabad 8401699466 | Ajmer 9829075765 | Aligarh 9761636422 | Allahabad $9839330710 \mid$ Amravati 8237551611 | Bangalore 9886600010 | Bilaspur 9993973456 | Calicut 9961969988 | Chandigarh 9317607007 | Chennai 9677030010 | Coimbatore 8883332556 | Delhi (Pitampura) 9718612147 | Delhi (Saket) 8587010876 | Ghaziabad 9910101602 | Gorakhpur 8574598018 | Greater Noida 9891990434 Hyderabad (Abids) 9989477436 | Hyderabad (Dilsukhnagar) 9581626677 | Indore 9826010276 | Jaipur 8290089245 | Jalandhar 7696197007 | Kanchipuram 8695554546 | Kanpur 9839234875 | Kochi 8113020304 | Kolhapur 9763631729 | Kolkata (Minto Park) 9007889898 | Kolkata (Vip Road) 9831891898 | Kollam 9048497233 | Madurai 8754029058 | Mumbai (Dadar) 9967897127 | Mumbai (Thane) 7893336874 | Mysore 9980155550 | Nagpur 7767001955 | Nanded 9172263930 | Nashik 8888559922 | Noida 9560983851 | Pune 9561133868 | Rajkot 9909986464 | Ranchi 8804445566 | Silchar 9957577496 | Surat 9377859870 | Srinagar 9906475295 Trichy 7667369058 | Trivandrum 9447132291 | V V Nagar 7778829064 | Vadodara 8401646906

[^0]: © All rights reserved by Thinkcell Learning Solutions Pvt. Ltd. No part of this booklet may be reproduced or utilized in any form without the written permission.

[^1]: © All rights reserved by Thinkcell Learning Solutions Pvt. Ltd. No part of this booklet may be reproduced or utilized in any form without the written permission.

[^2]: © All rights reserved by Thinkcell Learning Solutions Pvt. Ltd. No part of this booklet may be reproduced or utilized in any form without the written permission.

[^3]: © All rights reserved by Thinkcell Learning Solutions Pvt. Ltd. No part of this booklet may be reproduced or utilized in any form without the written permission.

