GATE SOLVED PAPER - CE

2015-2

General Aptitude

Q. 1-Q. 5 Carry one mark each.

Q. 1 Choose the most appropriate word from the options given below to complete the following sentence. The official answered \qquad that the complaints of the citizen would be looked into.
(A) respectably
(B) respectfully
(C) reputably
(D) respectively
Q. 2 Choose the statement where underlined word is used correctly
(A) The minister insured the victims that everything would be all right
(B) He ensured that the company will not have to bear any loss
(C) The actor got himself ensured against any accident
(D) The teacher insured students of good results
Q. 3 Four cards are randomly selected from a pack of 52 cards. If the first two cards are kings, what is the probability that the third card is a king?
(A) $\frac{4}{52}$
(B) $\frac{2}{50}$
(C) $\frac{1}{52} \times\left(\frac{1}{52}\right)$
(D) $\frac{1}{52} \times\left(\frac{1}{52}\right) \times\left(\frac{1}{50}\right)$
Q. 4 Which word is not a synonym for the word vernacular?
(A) regional
(B) indigeneous
(C) indigent
(D) colloquial
Q. 5 Mr. Vivek walks 6 meters North-East, then turns and walks 6 meters South-East, both at 60 degrees to East. He further moves 2 meters South and 4 meters West. What is the straight distance in meters between the point he started from and the point he finally reached?
(A) $2 \sqrt{2}$
(B) 2
(C) $\sqrt{2}$
(D) $\frac{1}{\sqrt{2}}$

Q. 6-Q. 10 Carry two marks each.

Q. 6 How many four digit numbers can be formed with the 10 digits $0,1,2, \ldots .9$ if no number can start with 0 and if repetitions are not allowed?
Q. 7 The word similar in meaning to 'dreary' is
(A) cheerful
(B) dreamy
(C) hard
(D) dismal
Q. 8 There are 16 teachers who can teach Thermodynamics (TD), 11 who can teach Electrical Sciences (ES), and 5 who can teach both TD and Engineering Mechanics (EM). There are a total of 40 teachers, 6 cannot teach any of the three subjects, i.e. EM, ES or TD. 6 can teach only ES. 44 can teach all three subjects, i.e. EM, ES and TD. 4 can teach ES and TD. How many can teach both ES and EM but not TD?
(A) 1
(B) 2
(C) 3
(D) 4
Q. 9 Read the following table giving sales data of five types of batteries for years 2006 to 2012

Year	Type I	Type II	Type III	Type IV	Type V
2006	75	144	114	102	108
2007	90	126	102	84	126
2008	96	114	75	105	135
2009	105	90	150	90	75
2010	90	75	135	75	90
2011	105	60	165	45	120
2012	115	85	160	100	145

Out of the following, which type of battery achieved highest growth between the years 2006 and 2012 ?
(A) Type V
(B) Type III
(C) Type II
(D) Type I

The given question is followed by two statements : select the most appropriate option that solves the question
Capacity of a solution tank A is 70% of the capacity of tank B. How many gallons of solution are in tank A and tank B?
Statements:
I. Tank A is 80% full and tank B is 40% full
II. Tank A if full contains 14,000 gallons of solution
(A) Statement I alone is sufficient
(B) Statement II alone is sufficient
(C) Either statement I or II alone is sufficient
(D) Both the statement I and II together are sufficient

END OF THE QUESTION PAPER

Civil Engineering

Q. 1-Q. 25 Carry one mark each.

Q. 1 A column of size $450 \mathrm{~mm} \times 600 \mathrm{~mm}$ has unsupported length of 3.0 m and is braced against side sway in both directions. According to IS 456:2000, the minimum eccentricities (in mm) with respect to major and minor principle axes are
(A) 20.0 and 20.0
(B) 26.0 and 21.0
(C) 26.0 and 20.0
(D) 21.0 and 15.0
Q. 2

The relationship between the length scale ratio $\left(L_{r}\right)$ and the velocity scale ratio (V_{r}) in hydraulic models, in which Froude dynamic similarity is maintained, is
(A) $V_{r}=L_{r}$
(B) $L_{r}=\sqrt{V_{r}}$
(C) $V_{r}=L_{r}^{1.5}$
(D) $V_{r}=\sqrt{L_{r}}$
Q. 3

Given $i=\sqrt{-1}$, the value of the definite integral, $I=\oint_{0}^{\frac{\pi}{2}} \frac{\cos x+i \sin x}{\cos x-i \sin x} d x$ is:
$\begin{array}{ll}\text { (A) } 1 & \text { (B) }-1\end{array}$
(C) i
(D) $-i$
Q. $4 \quad \mathrm{SO}_{2}$ and CO adversely affect
(A) oxygen carrying capacity of blood and functioning respectively
(B) functioning of the respiratory system and brain respectively
(C) functioning of the respiratory system and oxygen carrying capacity of bloody respectively
(D) functioning of air passages and chest respectively
Q. 5 A guided support as shown in the figure below is represented by three springs (horizontal, vertical and rotational) with stiffness k_{x}, k_{y} and k_{θ} respectively. The limiting values of k_{x}, k_{y} and k_{θ} are

(A) $\infty, 0, \infty$
(B) ∞, ∞, ∞
(C) $0, \infty, \infty$
(D) $\infty, \infty, 0$

Let $A=\left[\alpha_{i j}\right], 1 \leq i, j \leq n$ with $n \geq 3$ and $a_{i j}=i . j$. The rank of A is
(A) 0
(B) 1
(C) $n-1$
(D) n
Q. 7

A hydraulic jump takes place in a frictionless rectangular channel. The pre-jump depth is y_{p}. The alternate and sequent depths corresponding to y_{p} are y_{a} and y_{s} respectively. The correct relationship among y_{p}, y_{a} and y_{s} is
(A) $y_{a}<y_{s}<y_{p}$
(B) $y_{p}<y_{s}<y_{a}$
(C) $y_{p}<y_{s}=y_{a}$
(D) $y_{a}=y_{s}=y_{p}$
Q. 8 A steel member ' M ' has reversal of stress due to live loads, whereas another member ' N ' has reversal of stress due to wind load. As per IS 800:2007, the maximum slenderness ratio permitted is
(A) less for member ' M ' than that of member ' N '
(B) more for member ' M ' than for member ' N '
(C) same for both the members
(D) not specified in the Code
Q. $9 \quad \lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{2 x}$ is equal to
(A) e^{-2}
(B) e
(C) 1
(D) e^{2}
Q. 10 In a leveling work, sum of the Back Sight (B.S.) and Fore Sight (F.S.) have been found to be 3.085 m and 5.645 m respectively. If the Reduced Level (R.L.) of the starting station is $100,000 \mathrm{~m}$, the R.L. (in m) of the last station is \qquad _.
Q. 11 In friction circle method of slope stability analysis, if r defines the radius of the slip circle, the radius of friction circle is
(A) $r \sin \phi$
(B) r
(C) $r \cos \phi$
(D) $r \tan \phi$
Q. 12 Net ultimate bearing capacity of a footing embedded in a clay stratum
(A) increases with depth of footing only
(B) increases with size of footing only
(C) increases with depth and size of footing
(D) is independent of depth and size of footing
Q. 13 A groundwater sample was found to contain $500 \mathrm{mg} / \mathrm{L}$ total dissolved solids (TDS). TDS (in \%) present in the sample is \qquad _.
Q. 14 In Newton-Raphson iterative method, the initial guess value $\left(x_{\mathrm{ini}}\right)$ is considered as zero while finding the roots of the equation: $f(x)=-2+6 x-4 x^{2}+0.5 x^{3}$. The correction, Δx, to be added to $x_{\text {ini }}$ in the first iteration is \qquad $-$.

Prying forces are
(A) shearing forces on the bolts because of the joints
(B) tensile forces due to the flexibility of connected parts
(C) bending forces on the bolts because of the joints
(D) forces due the friction between connected parts
Q. 16

For the plane stress situation shown in the figure, the maximum shear stress and the plane on which it acts are

(A) -50 MPa , on a plane 45° clockwise w.r.t. x-axis
(B) -50 MPa , on a plane 45° anti-clockwise w.r.t. x-axis
(C) 50 MPa , at all orientations
(D) Zero, at all orientations
Q. 18 A horizontal beam $A B C$ is loaded as shown in the figure below. The distance of the point of contraflexure from end A (in m) is \qquad $-$

In the water content of a fully saturated soil mass is 100% the void ratio of the sample is
(A) Less than specific gravity of soil
(B) equal to specific gravity of soil
(C) greater than specific gravity of soil
(D) independent of specific gravity of soil
Q. 20 The relationship between porosity (η), specific yield $\left(S_{y}\right)$ and specific retention (S_{r}) of an unconfined aquifer is
(A) $S_{y}+S_{r}=\eta$
(B) $S_{y}+\eta=S_{r}$
(C) $S_{r}+\eta=S_{y}$
(D) $S_{y}+S_{r}+\eta=1$
Q. 21 While minimizing the function $f(x)$, necessary and sufficient conditions for a point, x_{0} to be a minima are:
(A) $f^{\prime}\left(x_{0}\right)>0$ and $f^{\prime \prime}\left(x_{0}\right)=0$
(B) $f^{\prime}\left(x_{0}\right)<0$ and $f^{\prime \prime}\left(x_{0}\right)=0$
(C) $f^{\prime}\left(x_{0}\right)=0$ and $f^{\prime \prime}\left(x_{0}\right)<0$
(D) $f^{\prime}\left(x_{0}\right)=0$ and $f^{\prime \prime}\left(x_{0}\right)>0$

The combined correction due to curvature and refraction (in m) for distance of 1 km on the surface of Earth is
(A) 0.0673
(B) 0.673
(C) 7.63
(D) 0.763

Surcharge loading required to placed on the horizontal backfill of a smooth retaining vertical wall so as to completely eliminate tensile crack is:
(A) $2 c$
(B) $2 c k_{a}$
(C) $2 c \sqrt{k_{a}}$
(D) $\frac{2 c}{\sqrt{k_{a}}}$
Q. 25 The following statements are made related to the lengths of turning lanes at signalised intersections
$1 \quad 1.5$ times the average number of vehicles (by vehicle type) that would store in turning lane per cycle during the peak hour.
22 times the average number of vehicles (by vehicle type) that would store in turning lane per cycle during the peak hour.
3 A verage number of vehicles (by vehicle type) that would store in the adjacent through lane per cycle during the peak hour.
4 Average number of vehicles (by vehicle type) that would store in all lanes per cycle during the peak hour.
(A) Maximum of (2 and 3)
(B) Maximum of (1 and 3)
(C) Average of (1 and 3)
(D) Only (4)

Q. 26 - Q. 55 Carry two marks each.

Q. 26 Ultimate BOD of a river water sample is $20 \mathrm{mg} / \mathrm{L}$. BOD rate constant (natural \log) is 0.15 day $^{-1}$. The respective values of BOD (in \%) exerted and remaining after 7 days are:
(A) 45 and 55
(B) 55 and 45
(C) 65 and 35
(D) 75 and 25
Q. 27 A steel strip of length, $L=200 \mathrm{~mm}$ is fixed at end A and rests at B on a vertical spring of stiffness, $k=2 \mathrm{~N} / \mathrm{mm}$. The steel strip is 5 mm wide and 10 mm thick. A vertical load, $P=50 \mathrm{~N}$ is applied at B, as shown in the figure. Considering $E=200 \mathrm{GPa}$, the force (in N) developed in the spring is \qquad

Q. 28 Match the information related to test on aggregates given in Group-I with that in Group-II.

	Group-I		Group-II
P.	Resistance to impact	1.	Hardness
Q.	Resistance to wear	2.	Strength
R.	Resistance to weathering action	3.	Toughness
S.	Resistance to crushing	4.	Soundness

(A) P-1, Q-3, R-4, S-2
(B) P-3, Q-1, R-4, S-2
(C) P-4, Q-1, R-3, S-2
(D) P-3, Q-4, R-2, S-1
Q. 29 A simply supported reinforced concrete beam of length 10 m sags while undergoing shrinkage. Assuming a uniform curvature of $0.004 \mathrm{~m}^{-1}$ along the span, the maximum deflection (in m) of the beam at mid-span is \qquad .
Q. 30 A 6 m high retaining wall having a smooth vertical back face retains a layered horizontal backfill. Top 3 m thick layer of the backfill is sand having an angle of internal friction, $\varphi=30^{\circ}$ while the bottom layer is 3 m thick clay with cohesion, $c=20 \mathrm{kPa}$. Assume unit weight for both sand and clay as $18 \mathrm{kN} / \mathrm{m} 3$. The total active earth pressure per unit length of the wall (in kN / m) is:
(A) 150
(B) 216
(C) 156
(D) 196
Q. 31 A simply supported beam $A B$ of span, $L=24 \mathrm{~m}$ is subjected to two wheel loads acting at a distance, $d=5 \mathrm{~m}$ apart as shown in the figure below. Each wheel transmits a load, $P=3 \mathrm{kN}$ and may occupy any position along the beam. If the beam is an I-section having section modulus, $S=16.2 \mathrm{~cm}^{3}$, the maximum bending stress (in GPa) due to the wheel loads is \qquad

For probability density function of a random variable, x is

$$
\begin{aligned}
f(x) & =\frac{x}{4}\left(4-x^{2}\right) \text { for } 0 \leq x \leq 2 \\
& =0 \text { otherwise }
\end{aligned}
$$

The mean μ_{z} of the random variable is \qquad .
Q. 33 In a pre-stressed concrete beam section shown in the figure, the net loss is 10% and the final pre-stressing force applied at X is 750 kN . The initial fiber stresses (in $\mathrm{N} / \mathrm{mm}^{2}$) at the top and bottom of the beam were:

(A) 4.166 and 20.833
(B) -4.166 and -20.833
(C) 4.166 and -20.833
(D) -4.166 and 20.833
Q. 34 A $588 \mathrm{~cm}^{3}$ volume of moist sand weighs 1010 gm . Its dry weight is 918 gm and specific gravity of solids, G is 2.67 . Assuming density of water as $1 \mathrm{gm} / \mathrm{cm}^{3}$, the void ratio is \qquad _.
Q. 35 A pipe of 0.7 m diameter has a length of 6 km and connects two reservoirs A and B. The water level in reservoir A is at an elevation 30 m above the water level in reservoir B. Halfway along the pipe line, there is a branch through which water can be supplied to a third reservoir C. The friction factor of the pipe is 0.024 . The quantity of water discharged into reservoir C is $0.15 \mathrm{~m}^{3} / \mathrm{s}$. Considering the acceleration due to gravity as $9.81 \mathrm{~m} / \mathrm{s}^{2}$ and neglecting minor losses, the discharge (in $\mathrm{m}^{3} / \mathrm{s}$) into the reservoir B is \qquad _.
A 4 m thick layer of normally consolidated clay has an average void ratio of 1.30 . Its compression index is 0.6 and coefficient of consolidation is $1 \mathrm{~m}^{2} / \mathrm{yr}$. If the increase in vertical pressure due to foundation load on the clay layer is equal to the existing effective overburden pressure, the change in the thickness of the clay layer is \qquad mm .
Q. 37 According to the concept of Limit State Design as per IS456:2000, the probability of failure of a structure is \qquad .

The average surface area of reservoir in the month of June is $20 \mathrm{~km}^{2}$. In the same month, the average rate of inflow is $10 \mathrm{~m}^{3} / \mathrm{s}$, outflow rate is $15 \mathrm{~m}^{3} / \mathrm{s}$, monthly rainfall is 10 cm , monthly seepage loss is 1.8 cm and the storage change is 16 million m^{3}. The evaporation (in cm) in that month is
(A) 46.8
(B) 136.0
(C) 13.6
(D) 23.4
Q. 43 The two Eigen values of the matrix $\left[\begin{array}{ll}2 & 1 \\ 1 & p\end{array}\right]$ have a ratio of $3: 1$ for $p=2$.

What is another value of p for which the Eigen values have the same ratio of $3: 1$?
(A) -2
(B) 1
(C) $\frac{7}{3}$
(D) $\frac{14}{3}$

Consider the following second order linear differential equation

$$
\frac{d^{2} y}{d x^{2}}=-12 x^{2}+24 x-20
$$

The boundary conditions are at $x=0, y=5$ and $x=2, y=21$
The value of at $x=1$ is \qquad
For step-size $\Delta x=0.4$, the value of following integral using Simpson's $\frac{1}{3}$ rule is
\qquad -.

$$
\int_{0}^{0.8}\left(0.2+25 x-200 x^{2}+675 x^{3}-900 x^{4}+400 x^{5}\right) d x
$$

A field channel has cultivable commanded area of 2000 hectares. The intensities of irrigation for gram and wheat are 30% and 50% respectively. Gram has a kor period of 18 days, kor depth of 12 cm , while wheat has a kor period of 18 days and a kor depth of 15 cm . The discharge (in $\mathrm{m}^{3} / \mathrm{s}$) required in the field channel to supply water to the commanded area during the kor period is \qquad -.

The relation between speed u (in km / h) and density k (number of vehicles/ km) for a traffic stream on a road is $u=70-0.7 \mathrm{k}$. The capacity on this road is
\qquad vph (vehicles/hour).

A water treatment plant of capacity, $1 \mathrm{~m}^{3} / \mathrm{s}$ has filter boxes of dimensions 6×10 m . Loading rate to the filters is $120 \mathrm{~m}^{3} /$ day $/ \mathrm{m}^{2}$. When two of the filters are out of service for back washing, the loading rate (in $\mathrm{m}^{3} /$ day $/ \mathrm{m}^{2}$) is \qquad .
A pile of diameter 0.4 m is fully embedded in a clay stratum having 5 layers, each 5 m thick as shown in the figure below. Assume a constant unit weight of soil as $18 \mathrm{kN} / \mathrm{m}^{3}$ for all the layers. Using λ-method $(\lambda=0.15$ for 25 m embedment length) and neglecting the end bearing component, the ultimate pile capacity (in kN) is

In Marshall method of mix design, the coarse aggregate, fine aggregate, fines and bitumen having respective values of specific gravity $2.60,2.70,2.65$ and 1.01 , are mixed in the relative proportions (\% by weight) of $55.0,35.8,3.7$ and 5.5 respectively. The theoretical specific gravity of the mix and the effective specific gravity of the aggregates in the mix respectively are
(A) 2.42 and 2.63
(B) 2.42 and 2.78
(C) 2.42 and 2.93
(D) 2.64 and 2.78

In a system two connected rigid bars $A C$ and $B C$ are of identical length, L with pin supports at A and B. The bars are interconnected at C by a frictionless hinge. The rotation of the hinge is restrained by a rotational spring of stiffness, k . The system initially assumes a straight line configuration, $A C B$. Assuming both the bars as weightless, the rotation at supports, A and B, due to a transverse load, P applied at C is
(A) $\frac{P L}{4 k}$
(B) $\frac{P L}{2 k}$
(C) $\frac{P}{4 k}$
(D) $\frac{P k}{4 L}$

A fixed end beam is subjected to a load, W at $\frac{1}{3}{ }^{\text {rd }}$ span from the left support as shown in the figure. The collapse load of the beam is

(A) $16.5 \mathrm{M}_{\mathrm{p}} / \mathrm{L}$
(B) $15.5 \mathrm{M}_{\mathrm{p}} / \mathrm{L}$
(C) $15.0 \mathrm{M}_{\mathrm{p}} / \mathrm{L}$
(D) $16.0 \mathrm{M}_{\mathrm{p}} / \mathrm{L}$

In a wastewater treatment plant, primary sedimentation tank (PST) designed at an overflow of $32.5 \mathrm{~m}^{3} /$ day $/ \mathrm{m}^{2}$ is 32.5 m long, 80 m wide and liquid depth of 2.25 m . If the length of the weir is 75 m , the weir loading rate (in $\mathrm{m}^{3} / \mathrm{day} / \mathrm{m}$) is \qquad _.
A landfill is to be designed to serve a population of 200000 for a period of 25 years. The solid waste (SW) generation is $2 \mathrm{~kg} / \mathrm{person} / \mathrm{day}$. The density of the un-compacted SW is $100 \mathrm{~kg} / \mathrm{m}^{3}$ and a compaction ratio fo 4 is suggested. The ratio of compacted fill (i.e. $\mathrm{SW}+$ cover) to compacted SW is 1.5 . The landfill volume (in million m^{3}) required is \qquad -.

The bearings of two inaccessible stations, S_{1} (Easting 500 m , Northing 500 m) and S_{2} (Easting 600 m , Northing 450 m) from a station S_{3} were observed as 225° and $153^{\circ} 26^{\prime}$ respectively. The independent Easting (in m) of station S_{3} is:
(A) 450.000
(B) 570.710
(C) 550.000
(D) 650.000

ANSWER KEY

General Aptitude									
1	2	3	4	5	6	7	8	9	10
(B)	(B)	(B)	(C)	(A)	(4536)	(D)	(A)	(D)	(D)

Civil Engineering									
1	2	3	4	5	6	7	8	9	10
(B)	(D)	(B)	(C)	(A)	(B)	(B)	(A)	(D)	(97.440)
11	12	13	14	15	16	17	18	19	20
(A)	(D)	(0.05)	(0.3333)	(B)	(D)	(0.685)	(0.25)	(B)	(A)
21	22	23	24	25	26	27	28	29	30
(D)	(A)	(D)	(54)	(A)	(C)	(3)	(B)	(0.0005)	(A)
31	32	33	34	35	36	37	38	39	40
(1759.2)	(1.0667)	(D)	(0.71)	(0.5716)	(314)	(0.097)	(100)	(B)	(A)
41	42	43	44	45	46	47	48	49	50
(29.43)	(B)	(D)	(-2)	(-3.8293)	(1.427)	(175)	(144)	(1060.29)	(A)
51	52	53	54	55					
(A)	(C)	(112.67)	(21.9)	(C)					

