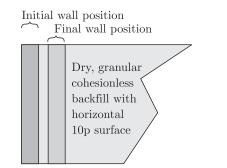
2012

Q. 1 - Q. 25 carry one mark each.

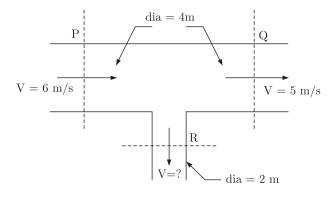

Q. 1	The estimate of $\int_{0.5}^{1.5} \frac{dx}{x}$ obtained using Simpson's rule with three-point fur	
	evaluation exceeds the exact value by	
	(A) 0.235	(B) 0.068
	(C) 0.024	(D) 0.012
Q. 2	1 1 5	is normally distributed with mean and 0 mm, respectively. The probability that an 1200 mm is (B) 50% (D) 100%
	-2 -3 4	
Q. 3	The infinite series $1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \frac$	corresponds to
	(A) sec <i>x</i>	(B) e^x
	(C) $\cos x$	(D) $1 + \sin^2 x$
Q. 4	The Poisson's ratio is defined as	
	(A) $\left \frac{\text{axial stress}}{\text{lateral stress}} \right $	(B) $\left \frac{\text{lateral strain}}{\text{axial strain}} \right $
	(C) $\left \frac{\text{lateral stress}}{\text{axial stress}} \right $	(D) $\left \frac{\text{axial strain}}{\text{lateral strain}} \right $
Q. 5	The following statements are related to	bending of beams:
	I The slope of the bending moment d	0
	II The slope of the shear force diagram	n is equal to the load intensity.
	III The slope of the curvature is equal	to the flexural rotation.
	IV The second derivative of the deflect	ion is equal to the curvature.
	The only FALSE statement is	
	(A) I	(B) II
	(C) III	(D) IV
Q. 6	÷	eep in still water in such a way that the be is p , then the maximum shear stress
	(A) 0	(B) <i>p</i> /2
	(C) <i>p</i>	(D) 2 <i>p</i>

As per IS 456:2000, in the Limit State Design of a flexural member, the strain in

Q. 7

	reinforcing bars under tension at ultimate state should not be less than		
	(A) $\frac{f_y}{E_s}$	(B) $\frac{f_y}{E_s} + 0.002$	
	(C) $\frac{f_y}{1.15 E_s}$	(D) $\frac{f_y}{1.15E_s} + 0.002$	
Q. 8	Which one of the following is categoris prestressed concrete member?(A) Loss due to elastic shortening(B) Loss due to friction(C) Loss due to relaxation of strands(D) Loss due to anchorage slip	sed as a long-term loss of prestress in a	
Q. 9	In a steel plate with bolted connections, of failure under (A) tension (C) flexure	(B) compression(D) shear	
Q. 10		(B) 1.0(D) 4.0	
Q. 11	The effective stress friction angle of a sa of shear stress to normal effective stress (A) 0.781 (C) 0.488	turated, cohesionless soil is 38°. The ratio on the failure plane is (B) 0.616 (D) 0.438	
Q. 12	clayey soil employing two different leve of soil. With regard to the above tests, I The optimum moisture content is en higher energy.	xpected to be more for the tests with ted to be more for the tests with higher	
Q. 13	As per the Indian Standard soil classific liquid limit of 40% and plasticity index (A) CH (C) CL	cation system, a sample of silty clay with of 28% is classified as (B) CI (D) CL-ML	

A smooth rigid retaining wall moves as shown in the sketch causing the backfill 0.14 material to fail. The backfill material is homogeneous and isotropic, and obeys the Mohr-Coulomb failure criterion. The major principal stress is



- (A) parallel to the wall face and acting downwards
- (B) normal to the wall face
- (C) oblique to the wall face acting downwards
- (D) oblique to the wall face acting upwards
- sting net Q. 15 An embankment is to be constructed with a granular soil (bulk unit weight $= 20 \text{ kN/m}^3$) on a saturated clayey silt deposit (undrained shear strength = 25 kPa). Assuming undrained general shear failure and bearing capacity factor of 5.7, the maximum height (in m) of the embankment at the point of failure is (B) 5.0 (A) 7.1
 - (D) 2.5 (C) 4.5
- A trapezoidal channel is 10.0 m wide at the base and has a side slope of 4 Q. 16 horizontal to 3 vertical. The bed slope is 0.002. The channel is lined with smooth concrete (Manning's n = 0.012). The hydraulic radius (in m) for a depth of flow of 3.0 m is

(A)	20.0	(B) 3.5
(C)	3.0	(D) 2.1

- A rectangular open channel of width 5.0 m is carrying a discharge of $100 \text{ m}^3/\text{s}$. Q. 17 The Froude number of the flow is 0.8. The depth of flow (in m) in the channel is (A) 4 (B) 5
 - (C) 16 (D) 20
- 0.18

The circular water pipes shown in the sketch are flowing full. The velocity of flow (in m/s) in the branch pipe "R" is

(A) 3	(B) 4
(C) 5	(D) 6

Q. 19 The ratio of actual evapo-transpiration to potential evapo-transpiration is in the

range	
(A) 0.0 to 0.4	(B) 0.6 to 0.9
(C) 0.0 to 1.0	(D) 1.0 to 2.0

- A sample of domestic sewage is digested with silver sulphate, sulphuric acid, potassium dichromate and mercuric sulphate in chemical oxygen demand (COD) test. The digested sample is then titrated with standard ferrous ammonium sulphate (FAS) to determine the un-reacted amount of (A) mercuric sulphate (B) potassium dichromate
 - (C) silver sulphate (D) sulphuric acid
- **Assertion [a]:** At a manhole, the crown of the outgoing sewer should not be higher than the crown of the incoming sewer.

Reason [**r**]: Transition from a larger diameter incoming sewer to a smaller diameter outgoing sewer at a manhole should not be made.

- The **CORRECT** option evaluating the above statements is:
- (A) Both [a] and [r] are true and [r] is the correct reason for [a]
- (B) Both **[a]** and **[r]** are true but **[r]** is not the correct reason for **[a]**
- (C) Both [a] and [r] are false (D) [a] is true but [r] is false

Two major roads with two lanes each are crossing in an urban area to form an un-controlled intersection. The number of conflict points when both roads are one-way is "X" and when both roads are two-way is "Y". The ratio of X to Y is (A) 0.25 (B) 0.33
 (C) 0.50 (D) 0.75

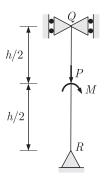
Q. 23 Two bgitumen samples "X" and "Y" have softening points 45°C and 60°C, respectively. Consider the following statements:

- I Viscosity of "X" will be higher than that of "Y" at the same temperature.
- II Penetration value of "X" will be lesser than that of "Y" under standard conditions.

The **CORRECT** option evaluating the above statements is

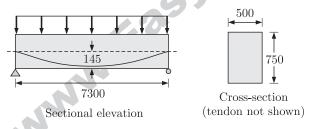
- (A) Both I and II are TRUE
 (B) I is FALSE and II is TRUE
 (C) Both I and II are FALSE
 (D) I is TRUE and II is FALSE
 a. 24
 Road roughness is measured using

 (A) Benkelman beam
 (B) Bump integrator
 (C) Dynamic cone penetrometer
 (D) Falling weight deflectometer
- Q. 25 Which of the following errors can be eliminated by reciprocal measurements in differential leveling?


(B) I only

- I Error due to earth's curvature
- II Error due to atomospheric refraction
- (A) Both I and II
- (C) II only (D) Neither I nor II

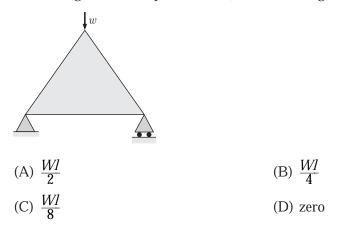
Q. 26 - Q. 55 carry two marks each.


Q. 26	the central difference formula $\frac{d}{dx}f(x)$	500.01, respectively. The corresponding
	(A) 1.3×10^{-4}	(B) 3.0×10^{-4}
	(C) 4.5×10^{-4}	(D) 9.0×10^{-4}
Q. 27	In an experiment, positive and negative probability of obtaining at most one neg (A) $\frac{1}{32}$ (C) $\frac{3}{32}$	e values are equally likely to occur. The value in five trials is (B) $\frac{2}{32}$ (D) $\frac{6}{32}$
Q. 28	The eigen values of matrix $\begin{bmatrix} 9 & 5 \\ 5 & 8 \end{bmatrix}$ are (A) -2.42 and 6.86 (C) 4.70 and 6.86	(B) 3.48 and 13.53(D) 6.86 and 9.50
Q. 29	For the parallelogram $OPQR$ shown in the . The area of the parallelogram is $\begin{array}{c} Q \\ R \\ Q \\ P \\ O \end{array}$	e sketch, $\overrightarrow{OP} = a\hat{i} + b\hat{j}$ and $\overrightarrow{OR} = c\hat{i} + d\hat{j}$
	(A) $ad - bc$	(B) $ac + bd$
	(C) $ad + bc$	(D) $ab - cd$
Q. 30	The solution of the ordinary differential condition, $y = 5$ at $x = 1$ is (A) $y = e^{-2x}$ (C) $y = 10.95e^{-2x}$	equation $\frac{dy}{dx} + 2y = 0$ for the boundary (B) $y = 2e^{-2x}$ (D) $y = 36.95e^{-2x}$
Q. 31	w per unit length, on half of the span fr	a uniformly distributed load of intensity om one end. The length of the span and I EI, respectively. The deflection at mid- (B) $\frac{5}{768} \frac{WI^4}{EI}$ (D) $\frac{5}{192} \frac{WI^4}{EI}$

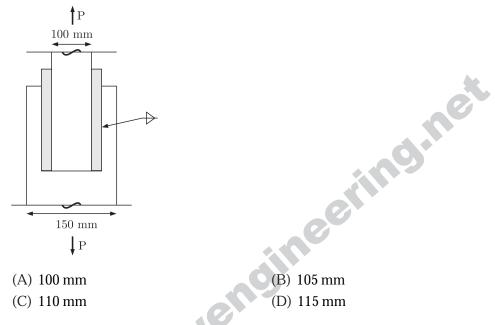
Q. 32 The sketch shows a column with a pin at the base and rollers at the top. It is subjected to an axial force P and a moment M at mid-height. The reaction(s) at R is/are

(A) a vertical force equal to P

- (B) a vertical force equal to P/2
- ringnet (C) a vertical force equal to P and a horizontal force equal to M/h
- (D) a vertical force equal to P/2 and a horizontal force equal to M/h
- A concrete beam prestressed with a parabolic tendon is shown in the sketch. The eccentricity of the tendon is measured from the centroid of the cross-section. The applied prestressing force at service is 1620 kN. The uniformly distributed load of 45 kN/m includes the self-weight.



The stress (in N/mm^2) in	the bottom fibre at mid-span is
(A) tensile 2.90	(B) compressive 2.90
(C) tensile 4.32	(D) compressive 4.32


Q. 34

Q. 33

A symmetric frame PQR consists of two inclined members PQ and QR, connected at 'Q' with a rigid joint, and hinged at 'P' and 'R'. The horizontal length PR is *l*. If a weight W is suspended at 'Q', the bending moment at 'Q' is

Q. 35 Two plates are connected by fillet welds of size 10 mm and subjected to tension, as shown in the sketch. The thickness of each plate is 12 mm. The yield stress and the ultimate tensile stress of steel are 250 MPa and 410 MPa, respectively. The welding is done in the workshop ($\gamma_{mw} = 1.25$). As per the Limit State Method of IS 800:2007, the minimum length (rounded off to the nearest higher multiple of 5 mm) of each weld to transmit a force *P* equal to 270 kN is

Q. 36

Two soil specimens with identical geometric dimensions were subjected to falling head permeability tests in the laboratory under identical conditions. The fall of water head was measured after an identical time interval. The ratio of initial to final water heads for the test involving the first specimen was 1.25. If the coefficient of permeability of the second specimen is 5-times that of the first, the ratio of initial to final water heads in the test involving the second specimen is (A) 3.05 (B) 3.80

(C) 4.00	(D) 6.25

Q. 37

A layer of normally consolidated, saturated silty clay of 1 m thickness is subjected to one dimensional consolidation under a pressure increment of 20 kPa. The properties of the soil are: specific gravity = 2.7, natural moisture content = 45%, compression index = 0.45, and recompression index = 0.05. The initial average effective stress within the layer is 100 kPa. Assuming Terzaghi's theory to be applicable, the primary consolidation settlement (rounded off to the nearest mm) is

(C) 14 mm (D) 16 mm

Q. 38 Steady state seepage is taking place through a soil element at Q, 2 m below the ground surface immediately downstream of the toe of an earthen dam as shown in the sketch. The water level in a piezometer installed at P, 500 mm above Q, is at the ground surface. The water level in a piezometer installed at R, 500 mm below Q, is 100 mm above the ground surface. The bulk saturated unit weight of the soil is 18 kN/m³ and the unit weight of water is 9.81 kN/m³. The vertical effective stress (in kPa) at Q is

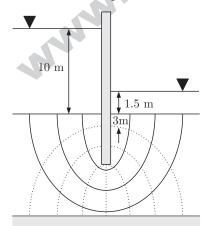
(A) 14.42	(B) 15.89
(C) 16.38	(D) 18.34

Q. 39 The top width and the depth of flow in a triangular channel were measured as 4 m and 1 m, respectively. The measured velocities on the centre line at the water surface, 0.2 m and 0.8 m below the surface are 0.7 m/s, 0.6 m/s and 0.4 m/s, respectively. Using two-point method of velocity measurement, the discharge (in m^3/s) in the channel is

(A) 1.4 (B) 1.2 (C) 1.0 (D) 0.8

Q. 40

Group I contains parameters and Group II lists methods/instruments.


	GIUU	p i contains parameters and c	noup		-
	1	Group I	3	Group II	
	Р.	Streamflow velocity	1.	Anemometer	
	Q.	Evapo-transpiration rate	2.	Penman's method	
	R.	Infiltration rate	3.	Horton's method	
	S.	Wind velocity	4.	Current meter	
		CORRECT match of Group I	with	-	
	(A) F	P-1, Q-2, R-3, S-4		(B) P-4, Q-3, R-2, S-1	
	(C) F	P-4, Q-2, R-3, S-1		(D) P-1, Q-3, R-2, S-4	
Q. 41	rainfa	at crop requires 55 cm of wat all during this period is 100 m area (in ha) of the land which o	n. As	ssume the irrigation efficie	ency to be 60%.
	(A) 1	3.82		(B) 18.85	
	(C) 2			(D) 230.40	
Q. 42	samp	ter sample has a pH of 9.25. T le is 0 ^{-9.25} moles/L	he co	ncentration of hydroxyl ic (B) 10 ^{-4.75} mmoles/L	ons in the water
		0.302 mg/L		(D) 3.020 mg/L	
Q. 43	A town is required to treat $4.2 \text{ m}^3/\text{min}$ of raw water for daily domestic supply. Flocculating particles are to be produced by chemical coagulation. A column analysis indicated that an overflow rate of 0.2 mm/s will produce satisfactory particle removal in a settling basin at a depth of 3.5 m . The required surface area (in m ²) for settling is (A) 210 (B) 350 (C) 1728 (D) 21000				
Q. 44	for a follow const	vement designer has arrived at newly developing national l ving data: design life = 15 yea ruction = 4500 vehicles/day, ge factor used in the calculati .53	nighw rs, co annu	way as per IRC:37 guide commercial vehicle count b al traffic growth rate $= 8$	lines using the efore pavement

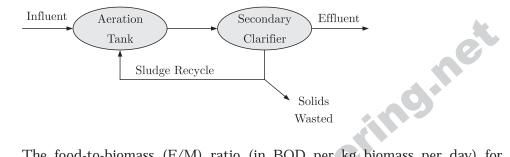
- Q. 45 The following data are related to a horizontal curved portion of a two-lane highway: length of curve = 200 m, radius of curve = 300 m and width of pavement = 7.5 m. In order to provide a stopping sight distance (SSD) of 80 m, the set back distance (in m) required from the centre line of the inner lane of the pavement is (A) 2.54 (B) 4.55
 - (C) 7.10 (D) 7.96
- A two-lane urban road with one-way traffic has a maximum capacity of 1800 vehicles/hour. Under the jam condition, the average length occupied by the vehicles is 5.0 m. The speed versus density relationship is linear. For a traffic volume of 1000 vehicles/hour, the density (in vehicles/km) is
 - (A) 52 (B) 58 (C) 67 (D) 75
- C. 47 The horizontal distance between two stations P and Q is 100 m. The vertical angles from P and Q to the top of a vertical tower at T are 3° and 5° above horizontal, respectively. The vertical angles from P and Q to the base of the tower are 0.1° and 0.5° below horizontal, respectively. Stations P, Q and the tower are in the same vertical plane with P and Q being on the same side of T. Neglecting earth's curvature and atmospheric refraction, the height (in m) of the tower is (A) 6.972 (B) 12.387
 - (C) 12.540

(D) 128.745

Common Data For Questions. 48 and 49 :

The flow net around a sheet pile wall is shown in the sketch. The properties of the soil are: permeability coefficient = 0.09 m/day (isotropic), specific gravity = 2.70 and void ratio = 0.85. The sheet pile wall and the bottom of the soil are impermeable.

Q. 48


The seepage loss (in m ³	per day per unit length of the wall) of water is
(A) 0.33	(B) 0.38
(C) 0.43	(D) 0.54

Q. 49	The factor of safety against the	ne occurrence of piping failure is
	(A) 3.55	(B) 2.93

(C) 2.60 (D) 0.39

Common Data For Questions. 50 and 51 :

An activated sludge system (aketched below) is operating at equilibrium with the following information. Wastewater related data: flow rate = 500 m^3 /hour, influent BOD = 150 mg/L, effluent BOD = 10 mg/L. Aeration tank related data: hydraulic retention time = 8 hours, mean-cell-residence time = 240 hours, volume = 4000 m^3 , mixed liquor suspended solids = 2000 mg/L.

Q. 50	The food-to-biomass (F/M) ratio	(in BOD per kg biomass per day) for the
	aeration tank is	
	(A) 0.015	(B) 0.210
	(C) 0.225	(D) 0.240
Q. 51	The mass (in kg/day) of solids was	ted from the system is
	(A) 24000	(B) 1000

(C) 800

Statement For Linked Answer Q. 52 and 53 :

The cross-section at mid-span of a beam at the edge of a slab is shown in the sketch. A portion of the slab is considered as the effective flange width for the beam. The grades of concrete and reinforcing steel are M25 and Fe415, respectively. The total area of reinforcing bars (A_s) is 4000 mm². At the ultimate limit state, x_u denotes the depth of the neutral axis from the top fibre. Treat the section as under-reinforced and flanged $(x_u > 100 \text{ mm})$.

(D) 33

Q. 52

The value of x_u (in mm) computed as per the Limit state Method of IS 456:2000 is

(A) 200.0	(B) 223.3
(C) 236.3	(D) 273.6

 0.53
 The ultimate moment capacity (in kNm) of the section, as per the Limit State Method of IS 456:2000 is

 (A) 475.0
 (D) 515.0

(A)	475.2	(B) 717	1.0
(C)	756.4	(D) 762	2.5

Statement For Linked Answer Q. 54 and 55 :

The drainage area of a watershed is 50 km^2 . The ϕ index is 0.5 cm/hour and the base flow at the outlet is $10 \text{ m}^3/\text{s}$. One hour unit hydrograph (unit depth = 1 cm) of the watershed is triangular in shape with a time base of 15 hours. The peak ordinate occurs at 5 hours.

The peak ordinate (in $m^3/s/cm$ of the (A) 10.00	unit hydrograph is (B) 18.52
(C) 37.03	(D) 185.20
1	tion of 1 hour, the peak ordinate (in m^3/s
(A) 55.00	(B) 82.60
(C) 92.60	(D) 102.60
	 (C) 37.03 For a storm of depth of 5.5 cm and dura) of the hydrograph is (A) 55.00

General Aptitude (GA) Questions

Q. 56 - Q. 60 carry one mark each.

Gener	al Aptitude (GA) Que	estions	net
Q. 56	- Q. 60 carry one mar	k each.	
Q. 56	the following sentence:	priate alternative from the options giv the mission succeeded in its attempt t (B) setbacks (D) delegations	
Q. 57	The cost function for a production. The firm c	product in a firm is given by $5q^2$, where the product at a market price of produced by the firm such that the p (B) 10 (D) 25	of Rs 50 per unit. The
Q. 58	the following sentence:	ppriate alternative from the options give e was hurt in the stampede. (B) which (D) whom	-
Q. 59	(A) They gave us the rupees.(B) This country's exp(C) The committee in settled for a lesser	cally INCORRECT sentence: money back less the service charges of benditure is not less than that of Bang itially asked for a funding of Fifty Lak sum. benditure on educational reforms is ve	gladesh. kh rupees, but later
Q. 60	below? Mitigate (A) Diminish	(B) Divulge	ng to the word given
	(C) Dedicate	(D) Denote	

Q. 61 - Q. 65 carry two marks each.

Q. 61	annual convention is being	a arch for the entrance to the ground in which the held. The profile of the arch follows the equation e height of the arch in meters. The maximum possible
	(A) 8 meters	(B) 10 meters
	(C) 12 meters	(D) 14 meters
Q. 62	conduct personal interviews High School-pass, must b Transportation paid, expen	time persons for the post of Field Interviewer to s to collect and collate economic data. Requirements: e available for Day, Evening and Saturday work. ses reimbursed. is the best inference from the above advertisement?
	(C) Not designed to make t(D) Not gender-discriminat	-
Q. 63	Given the sequence of term (A) OV (C) PV	s, AD CG FK JP, the next term is (B) OW (D) PW
Q. 64	Q: Adding 7 to each entryR: Doubling each entry inS: Doubling each entry in unchanged	in a list adds 7 to the mean of the list in a list adds 7 to the standard deviation of the list a list doubles the mean of the list a list leaves the standard deviation of the list
	(A) P, Q	(B) Q, R
	(C) P, R	(D) R, S
Q. 65	and Y. X supplies 60% and absorbers are subjected to are considered reliable. Of absorbers, 72% are reliable.	acted to buy shock absorbers from two suppliers X d Y supplies 40% of the shock absorbers. All shock a quality test. The ones that pass the quality test X's shock absorbers, 96% are reliable. Of Y's shock domly chosen shock absorber, which is found to be (B) 0.334 (D) 0.720

ANSWER KEY									
				<u>20</u>	<u>12</u>				
1	2	3	4	5	6	7	8	9	10
(D)	(A)	(B)	(B)	(C)	(A)	(D)	(C)	(A)	(D)
11	12	13	14	15	16	17	18	19	20
(A)	(B)	(B)	(B)	(A)	(D)	(A)	(B)	(C)	(B)
21	22	23	24	25	26	27	28	29	30
(B)	(A)	(D)	(B)	(A)	(D)	(D)	(B)	(A)	(D)
31	32	33	34	35	36	37	38	39	40
(B)	(C)	(B)	(D)	(B)	(A)	(D)	(A)	(C)	(C)
41	42	43	44	45	46	47	48	49	50
(A)	(C)	(B)	(B)	(B)	(C)	(B)	(B)	(C)	(C)
51	52	53	54	55	56	57	58	59	60
(C)	(B)	(B)	(D)	(C)	(B)	(A)	(A)	(D)	(A)
61	62	63	64	65		C			
(B)	(C)	(A)	(C)	(B)					
asyengint									
(C) (B) (B) (D) (C) (B) (A) (D) (A) 61 62 63 64 65 Image: Constraint of the second of the se									

ANSWER KEY