GATE SOLVED PAPER - CE

2005

Q. 1
Q. 2
Q. 3

The permissible stress in axial tension $\sigma_{\text {st }}$ in steel member on the net effective area of the section shall not exceed (f_{y} is the yield stress)
(A) $0.80 \mathrm{f}_{\mathrm{y}}$
(B) 0.75 fy
(C) 0.60 fy
(D) 0.50 fy

An unstiffened web l-section is fabricated from a 10 mm thick plate by fillet welding as shown in the figure. If yield stress of steel is 250 MPa , the maximum shear load that section can take is

(A) 750 kN
(B) 350 kN
(C) 337.5 kN
(D) 300 kN

A fillet-welded joint of 6 mm size is shown in the figure. The welded surfaces meet at $60-90$ degree and permissible stress in the filled weld is 108 M P . The safe load that can be transmitted by the joint is

(A) 162.7 kN
(B) 151.6 kN
(C) 113.4 kN
(D) 109.5 kN

Which one of the following is NOT correct for steel sections as per IS:800-1984 ?
(A) The maximum bending stress in tension or in compression in extreme fibre calculated on the effective section of a beam shall not exceed 0.66 fy .
(B) The bearing stress in any part of a beam when calculated on the net area shall not exceed $0.75 \mathrm{f}_{\mathrm{y}}$.
(C) The direct stress in compression on the gross sectional area of axially loaded compression member shall not exceed 0.6 fy
(D) None of the above
Q. 5 A cantilever beam of length L, width b and depth d is loaded with a concentrated vertical load at the tip. If yielding starts at a load P, the collapse load shall be
(A) 2.0 P
(B) 1.5 P
(C) 1.2 P
(D) P

Consider the matrices $X_{(4 \times 3)}, Y_{(4 \times 3)}$ and $\mathrm{P}_{(2 \times 3)}$.
The order of $\left[P\left(X^{\top} Y\right)^{-1} P^{\top}\right]^{\top}$ will be
(A) (2×2)
(B) (3×3)
(C) (4×3)
(D) (3×4)

Consider a non-homogeneous system of linear equations representing mathematically an over-determined system. Such a system will be
(A) consistent having a unique solution
(B) consistent having a unique solution
(C) inconsistent having a unique solution
(D) inconsistent having no solution

W hich one of the following is NOT true for complex number Z_{1} and Z_{2} ?
(A) $\frac{Z_{1}}{Z_{2}}=\frac{Z_{1} \bar{Z}_{2}}{\left|Z_{2}\right|^{2}}$
(B) $\left|Z_{1}+Z_{2}\right| \leq\left|Z_{1}\right|+\left|Z_{2}\right|$
(C) $\left|Z_{1}-Z_{2}\right| \leq\left|Z_{1}\right|-\left|Z_{2}\right|$
(D) $\left|Z_{1}+Z_{2}\right|^{2}+\left|Z_{1}-Z_{2}\right|^{2}=\left|Z_{1}\right|^{2}+2\left|Z_{2}\right|^{2}$
Q. $9 \quad$ Which one of the following statement is NOT true ?
(A) The measure of skewness is dependent upon the amount of dispersion
(B) In a symmetric distribution, the values of mean, mode and median are the same
(C) In a positively skewed distribution : mean $>$ median $>$ mode
(D) In a negatively skewed distribution: mode $>$ mean $>$ median

Consider the system of equation $A_{(n \times n)} X_{(n \times t)}=\lambda_{(n \times 1)}$ where, λ is a scalar. Let (λ_{i}, X_{i}) be an eigen-pair of an eigen value and its corresponding eigen vector for real matrix A. Let be a ($n \times n$) unit matrix. Which on of the following statement is NOT correct?
(A) For a homogeneous $n \times n$ system of linear equations, $(A-\lambda \mid) x=0$ having a nontrivial solution, the rank of $(A-\lambda)$ is less than n.
(B) For matrix A^{m}, m being a positive integer, $\left(\lambda_{i}^{m}, X_{i}^{m}\right)$ will be the eigen-pair for all i.
(C) If $A^{\top}=A^{-1}$, then $\left|\lambda_{i}\right|=1$ for all i
(D) If $A^{\top}=A$, then λ_{i} is real for all i
Q. 11 Transformation to linear form by substituting $v=y^{1-n}$ of the equation $\frac{d y}{d t}+p(t) y=q(t) y^{n} ; n>0$ will be
(A) $\frac{d v}{d t}+(1-n) p v=(1-n) q$
(B) $\frac{d v}{d t}+(1-n) p v=(1-n) q$
(C) $\frac{d v}{d t}+(1+n) p v=(1-n) q$
(D) $\frac{\mathrm{dv}}{\mathrm{dt}}+(1+\mathrm{n}) \mathrm{pv}=(1+\mathrm{n}) \mathrm{q}$

Statement For Linked Answer Q. 16 and 17 :

Give a >0, we wish to calculate its reciprocal value $1 /$ a by using Newton Raphson M ethod for $f(x)=0$.
Q. 16
Q. 17

A rail engine accelerates from its stationary position for 8 seconds and travels a distance of 280 m . According to the M ean Value Theorem, the speedometer at a certain time during acceleration must read exactly
(A) 0
(B) 8 kmph
(C) 75 kmph
(D) 126 kmph

The solution of $\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}+17 y=0 ; y(0)=1, \frac{d y}{d x}\left(\frac{x}{4}\right)=0$ in the range $0<x<\frac{\pi}{4}$ is given by
(A) $e^{-x}\left(\cos 4 x+\frac{1}{4} \sin 4 x\right)$
(B) $\mathrm{e}^{\mathrm{x}}\left(\cos 4 \mathrm{x}-\frac{1}{4} \sin 4 \mathrm{x}\right)$
(C) $e^{-4 x}\left(\cos x-\frac{1}{4} \sin x\right)$
(D) $e^{-4 x}\left(\cos 4 x-\frac{1}{4} \sin 4 x\right)$

Value of the integral $\oint_{c}\left(x y d y-y^{2} d x\right)$, where, c is the square cut from the first quadrant by the line $x=1$ and $y=1$ will be (Use Green's theorem to change the line integral into double integral)
(A) $\frac{1}{2}$
(B) 1
(C) $\frac{3}{2}$
(D) $\frac{5}{3}$

Consider the likely applicability of Cauchy's Integral Theorem to evaluate the following integral counter clockwise around the unit circle c.

$$
I=\oint_{c} \sec z d z
$$

z being a complex variable. The value of I will be
(A) I $=0$: singularities set $=\phi$
(B) 1,0
(C) $I=\pi / 2$: singularities set $=\{ \pm n \pi ; n=0,1,2 \ldots \ldots \ldots \ldots \ldots$
(D) None of above

The Newton Raphson algorithm for the function will be
(A) $X_{k+1}=\frac{1}{2}\left(X_{k}+\frac{a}{X_{k}}\right)$
(B) $X_{k+1}=\left(X_{k}+\frac{a}{2} X_{k}^{2}\right)$
(C) $\mathrm{X}_{\mathrm{k}+1}=2 \mathrm{X}_{\mathrm{k}}=\mathrm{a} \mathrm{X}_{\mathrm{k}}^{2}$
(D) $X_{k+1}=X_{k}-\frac{a}{2} X_{k}^{2}$

For $\mathrm{a}=7$ and starting with $\mathrm{x}_{0}=0.2$, the first two iterations will be
(A) $0.11,0.1299$
(B) $0.12,0.1392$
(C) $0.12,0.1416$
(D) $0.13,0.1428$

Total Kjeldahl nitrogen is a measure of
(A) total organic nitrogen
(B) total organic and ammonia nitrogen
(C) total ammonia nitrogen
(D) total inorganic and ammonia nitrogen

1 TCU is equivalent to the color produced by
(A) $1 \mathrm{mg} / \mathrm{L}$ of chloroplatinate ion
(B) $1 \mathrm{mg} / \mathrm{L}$ of platinum ion
(C) $1 \mathrm{mg} / \mathrm{L}$ platinum in form of choloroplatinate ion
(D) $1 \mathrm{mg} / \mathrm{L}$ of organo-chloroplatinate ion

In aerobic environment, nitrosomonas convert
(A) NH_{3} to NO_{2}
(B) NO_{2}^{-}to NO_{3}^{-}
(C) NH_{3} to $\mathrm{N}_{2} \mathrm{O}$
(D) NO_{2}^{-}to HNO_{3}

Bulking sludge refers to having
(A) $\mathrm{F} / \mathrm{M}<0.3 / \mathrm{d}$
(B) $0.3 / \mathrm{d}<\mathrm{F} / \mathrm{M}<0.6 / \mathrm{d}$
(C) $\mathrm{F} / \mathrm{M}=$ zero
(D) $F / M>0.6 / d$

If tomato juice is having a pH of 4.1, the hydrogen ion concentration will be
(A) $10.94 \times 10^{-5} \mathrm{~mol} / \mathrm{L}$
(B) $9.94 \times 10^{-5} \mathrm{~mol} / \mathrm{L}$
(C) $8.94 \times 10^{-6} \mathrm{~mol} / \mathrm{L}$
(D) $7.94 \times 10^{-5} \mathrm{~mol} / \mathrm{L}$

List-I contains some properties of water/ waste water and List-II contains list of some tests on water/ waste water. M atch List-I with List-II and select the correct answer using the codes given below the lists:

	List-I		List-II
a.	Suspended solids concentration	1.	B OD
b.	Metabolism of biodegradable organics	2.	M PN
c.	Bacterial concentration	3.	J ar test
d.	Coagulant dose	4.	Turbidity

Codes:

	a	b	c	d
(A)	2	1	4	3
(B)	4	1	2	3
(C)	2	4	1	3
(D)	4	2	1	3

Match List-I with List-II and select the correct answer using the codes given below the lists :

	List-I		List-II
a.	Thickening of sludge	1.	Decrease in volume of sludge by chemical oxidation
b.	Stabilization of sludge	2.	Separation of water by heat or chemical treatment
c.	Conditioning of sludge	3.	Digestion of sludge
d.	Reduction of sludge	4.	Separation of water by floatation or gravity

Codes:

	a	b	c	d
(A)	4	3	1	2
(B)	3	2	4	1
(C)	4	3	2	1
(D)	2	1	3	4

A circular primary clarifier processes an average flow of $5005 \mathrm{~m}^{3} / \mathrm{d}$ of municipal waste water. The overflow rate is $35 \mathrm{~m}^{3} / \mathrm{m}^{2} / \mathrm{d}$. The diameter of clarifier shall be
(A) 10.5 m
(B) 11.5 m
(C) 12.5 m
(D) 13.5

Match List-I with List-II and select the correct answer using the codes given below the lists:

	List-I		List-II
a.	Release value	1.	Reduce high inlet pressure to lower outlet pressure
b.	Check value	2.	Limit the flow of water to single direction
c.	Gate value	3.	Remove air from the pipeline
d.	Pilot value	4.	Stopping the flow of water in the pipeline

Codes:

	a	b	c	d
(A)	3	2	4	1
(B)	4	2	1	3
(C)	3	4	2	1
(D)	1	2	4	3

In a certain situation, waste water discharged into a river mixer with the river water instantaneously and completely. Following is the data available :
Waste water $\mathrm{DO}=2.00 \mathrm{mg} / \mathrm{L}$
Discharge rate $=1.10 \mathrm{~m}^{3} / \mathrm{s}$
River water $\quad \mathrm{DO}=8.3 \mathrm{mg} / \mathrm{L}$
Flow rate $=8.70 \mathrm{~m}^{3} / \mathrm{s}$
Temperature $=20^{\circ} \mathrm{C}$
Initial amount of DO in the mixture of waste and river shall be
(A) $5.3 \mathrm{mg} / \mathrm{L}$
(B) $6.5 \mathrm{mg} / \mathrm{L}$
(C) $7.6 \mathrm{mg} / \mathrm{L}$
(D) $8.4 \mathrm{mg} / \mathrm{L}$

Statement For Linked Answer Q. 28 and 29 :

A city is going to install the rapid sand filter the sedimentation tanks.
Use the following data.

Design loading rate to the filter	-	$200 \mathrm{~m}^{3} / \mathrm{m}^{2} \mathrm{~d}$
Design flow rate	-	$0.5 \mathrm{~m}^{3} / \mathrm{s}$
Surface area per filter box	-	$50 \mathrm{~m}^{2}$

The surface area required for the rapid sand filter will be
(A) $210 \mathrm{~m}^{2}$
(B) $215 \mathrm{~m}^{2}$
(C) $216 \mathrm{~m}^{2}$
(D) $218 \mathrm{~m}^{2}$

The number of filters required shall be
(A) 3
(B) 4
(C) 6
(D) 8

An inert tracer is injected continuously from a point in an unsteady flow field. The locus of locations of all tracer particles at an instance of time represents
(A) Streamline
(B) Pathline
(C) Streamtube
(D) Streakline

The reading of differential manometer of a Venturimeter, placed at 45° to the horizontal is 11 cm . If the Venturimeter is turned to horizontal position, the manometer reading will be
(A) zero
(B) $\frac{11}{\sqrt{2}} \mathrm{~cm}$
(C) 11 cm
(D) $11 \sqrt{2} \mathrm{~cm}$

A horizontal bed channel is followed by a steep bed channel as shown in the figure. The gradually-varied profiles over the horizontal and sleep beds are

(A) H_{2} and S_{2} respectively
(B) H_{2} and S_{1} respectively
(C) H_{3} and S_{2} respectively
(D) H_{3} and S_{1} respectively

A stream function is given by:

$$
\Psi=2 x^{2} y+(x+1) y^{2}
$$

The flow rate across a line joining points $A(3,0)$ and $B(0,2)$ is
(A) 0.4 units
(B) 1.1 units
(C) 4 units
(D) 5 units

The circulation ' Γ ' around a circle of radius 2 units for the velocity field $u=2 x+3 y$ and $v=-2 y$ is
(A) -6π unit
(B) -12π units
(C) -18π units
(D) -24π units

A tank and a deflector are placed on a frictionless trolley. The tank issues water jet (mass density of water $=1000 \mathrm{~kg} / \mathrm{m}^{3}$), which strikes the deflector and turns by 45°. If the velocity of jet leaving the deflector is $4 \mathrm{~m} / \mathrm{s}$ and discharge is 0.1 $\mathrm{m}^{3} / \mathrm{s}$, the force recorded by the spring will be

(A) 100 N
(B) $100 \sqrt{2} \mathrm{~N}$
(C) 200 N
(D) $200 \sqrt{2} \mathrm{~N}$

Cross-section of an object (having same section normal to the paper) submerged into a fluid consists of a square of sides 2 m and triangle as shown in the figure. The object is hinged at point P that is one meter below the fluid free surface. If the object is to be kept in the position as shown in the figure, the value of ' X ' should be

(A) $2 \sqrt{3}$
(B) $4 \sqrt{3}$
(C) 4 m
(D) 8 m

Critical depth at a section of a rectangular channel is 1.5 m . The specific energy at that section is
(A) 0.75 m
(B) 1.0 m
(C) 1.5 m
(D) 2.25 m

A partially open sluice gate discharge water into a rectangular channel. The tail water depth in the channel is 3 m and Froude number is $\frac{1}{2 \sqrt{2}}$.
If a free hydraulic jump is to be formed at downstream of the sluice gate after the vena contract a of the jet coming out from the sluice gate, the sluice gate opening should be (coefficient of contraction $\mathrm{C}_{\mathrm{c}}=0.9$)
(A) 0.3 m
(B) 0.4 m
(C) 0.69 m
(D) 0.9 m

A triangular irrigation lined canal carries a discharge of $25 \mathrm{~m}^{3} / \mathrm{s}$ at bed slope $=\frac{1}{6000}$. If the side slopes of the canal are $1: 1$ and M anning's coefficient is 0.018 , the central depth of flow is equal to
(A) 1.98 m
(B) $3,62 \mathrm{~m}$
(C) 4.91 m
(D) 5.61 m

Root time method is used to determine
(A) L , time factor
(B) C_{v}, coefficient of consolidation
(C) a_{v}, coefficient of compressibility
(D) m_{v}, coefficient of volume compressibility

Negative skin friction in a soil is considered when the pile is constructed through a
(A) fill material
(B) dense coarse sand
(C) over consolidated stiff clay
(D) dense fine sand

There are two footings resting on the grounds surface. One footing is square of dimension ' B '. The other is strip footing of width ' B '. Both of them are subjected to a loading intensity of q . The pressure intensity at any depth below the base of the footing along the centre line would be
(A) equal in both footings
(B) large for square footing and small for strip footing
(C) large for strip footing and small for square footing
(D) more for strip footing at shallow depth ($\leq \mathrm{B}$) and more for square footing at large depth (>B)

A clayey soil has a maximum dry density of $16 \mathrm{kN} / \mathrm{m}^{3}$ and optimum moisture content of 12%. A contractor during the construction of core of an earth dam obtained the dry density $15.2 \mathrm{kN} / \mathrm{m}^{3}$ and water content 11%. This construction is acceptable because
(A) the density is less than the maximum dry density and water content is on dry side of optimum
(B) the compaction density is very low and water content is less than 12%
(C) the compaction is done on the dry side of the optimum
(D) both the dry density and water content of the compacted soil are within the desirable limits

In a constant head parameter with cross section area of $10 \mathrm{~cm}^{2}$, when the flow was taking place under a hydraulic gradient of 0.5 , the amount of water collected in 60 seconds is 600 cc . The permeability of the soil is
(A) $0.002 \mathrm{~cm} / \mathrm{s}$
(B) $0.02 \mathrm{~cm} / \mathrm{s}$
(C) $0.2 \mathrm{~cm} / \mathrm{s}$
(D) $2.0 \mathrm{~cm} / \mathrm{s}$
Q. 47 For a triaxial shear test conducted on a sand specimen at a confining pressure of $100 \mathrm{kN} / \mathrm{m}^{2}$ under drained conditions, resulted in a deviator stress ($\sigma_{1}-\sigma_{3}$) at failure of $100 \mathrm{kN} / \mathrm{m}^{2}$. The angle of shearing resistance of the soil would be
(A) 18.43°
(B) 19.47°
(C) 26.56°
(D) 30°
Q. $48 \quad$ A 3 m high retaining wall is supporting a saturated sand (saturated due to capillary action) of bulk density $18 \mathrm{kN} / \mathrm{m}^{3}$ and angle of shearing resistance 30° . The change in magnitude of active earth pressure at the base due to rise in ground water table from the base of the footing to the ground surface shall $\left(\gamma_{w}=10 \mathrm{kN} / \mathrm{m}^{3}\right)$
(A) increase by $20 \mathrm{kN} / \mathrm{m}^{2}$
(B) decrease by $20 \mathrm{kN} / \mathrm{m}^{2}$
(C) increase by $30 \mathrm{kN} / \mathrm{m}^{2}$
(D) decrease by $30 \mathrm{kN} / \mathrm{m}^{2}$
Q. 49 For two infinite slopes (one in dry condition and other in submerged condition) in a sand deposit having the angle of shearing resistance 30°, factor of safety was determined as 1.5 (for both slopes). The slope angles would have been
(A) 21.05° for dry slope and 21.05° for submerged slope
(B) 19.47° for dry slope and 18.40° for submerged slope
(C) 18.4° for dry slope and 21.05° for submerged slope
(D) 22.6° for dry slope and 19.47° for submerged slope
Q. 50 A strip footing (8 m wide) is designed for a total settlement of 40 mm . The safe bearing capacity (shear) was $150 \mathrm{kN} / \mathrm{m}^{2}$ and safe allowable soil pressure was 100 $\mathrm{kN} / \mathrm{m}^{2}$. Due to important of the structure, now the footing is to be redesigned for total settlement of 25 mm . The new width of the footing will be
(A) 5 m
(B) 8 m
(C) 12 m
(D) 12.8 m

During the subsurface investigations for design of foundations, a standard penetration test was conducted at 4.5 m below the ground surface. The record of number of blow is given below :

Penetration depth (cm)	Number of blows
$0-7.5$	3
$7.5-15$	3
$15-22.5$	6
$22.5-30$	6
$30-37.5$	8
$37.5-45$	7

A ssuming the water table at ground level, soil as fine sand and correction factor for overburden as 1.0 , the corrected ' N ' value for the soil would be
(A) 18
(B) 19
(C) 21
(D) 33

A soil mass contains 40% gravel, 50% sand and 10% silt. This soil can be classified as
(A) silty sandy gravel having coefficient of uniformly less than 60.
(B) silty gravelly sand having coefficient of uniformly equal to 10.
(C) gravelly silty sand having coefficient of uniformly greater than 60 .
(D) gravelly silty sand and its coefficient of uniformity cannot be determined.

A saturated soil mass has a total density $22 \mathrm{kN} / \mathrm{m}^{3}$ and a water content of 10%. The bulk density and dry density of this soil are
(A) $12 \mathrm{kN} / \mathrm{m}^{3}$ and $20 \mathrm{kN} / \mathrm{m}^{3}$ respectively
(B) $22 \mathrm{kN} / \mathrm{m}^{3}$ and $20 \mathrm{kN} / \mathrm{m}^{3}$ respectively
(C) $19.8 \mathrm{kN} / \mathrm{m}^{3}$ and $19.8 \mathrm{kN} / \mathrm{m}^{3}$ respectively
(D) $23.2 \mathrm{kN} / \mathrm{m}^{3}$ and $19.8 \mathrm{kN} / \mathrm{m}^{3}$ respectively

The length of summit curve on a two lane two way highway depends upon
(A) allowable rate of change of centrifugal acceleration
(B) coefficient of lateral friction
(C) required stopping sight distance
(D) required overtaking sight distance

Pradhan M antri Gram Sadak Yojna (PM GSY), launched in the year 2000, aims to provide rural connectivity with all-weather roads. It is proposed to connect the habitation in plan areas of population more than 500 persons by the year
(A) 2005
(B) 2007
(C) 2010
(D) 2012

List-I contains some properties of bitumen. List-II gives a list of Laboratory Tests conducted on bitumen to determine the properties. M atch the property the corresponding test and select the correct answer using the codes given below the lists:

List-I			List-II
a.	Resistance to flow	1.	Ductility test
b.	A bility to deform under load	2.	Penetration test
c.	Safety	3.	F lash and fire point test

Codes:

	a	b	c
(A)	2	1	3
(B)	2	3	1
(C)	1	2	3
(D)	3	1	2

Bituminous concrete is a mix comprising of
(A) fine aggregate, filler and bitumen
(B) fine aggregate and bitumen
(C) coarse aggregate, fine aggregate, filler and bitumen
(D) coarse aggregate, filler and bitumen

For a 25 cm thick cement concrete pavement, analysis of stresses gives the following values :
W heel load stress due to corner loading $30 \mathrm{~kg} / \mathrm{cm}^{2}$
W heel load stress due to edge loading $32 \mathrm{~kg} / \mathrm{cm}^{2}$
Warping stress at corner region during summer. $9 \mathrm{~kg} / \mathrm{cm}^{2}$
Warping stress at corner region during winter $7 \mathrm{~kg} / \mathrm{cm}^{2}$
Warping stress at edge region during summer. $8 \mathrm{~kg} / \mathrm{cm}^{2}$
Warping stress at edge region during summer. $6 \mathrm{~kg} / \mathrm{cm}^{2}$
Frictional stress during summer $5 \mathrm{~kg} / \mathrm{cm}^{2}$
Frictional stress during winter $4 \mathrm{~kg} / \mathrm{cm}^{2}$
The most critical value for this pavement is
(A) $40 \mathrm{~kg} / \mathrm{cm}^{2}$
(B) $42 \mathrm{~kg} / \mathrm{cm}^{2}$
(C) $44 \mathrm{~kg} / \mathrm{cm}^{2}$
(D) $45 \mathrm{~kg} / \mathrm{cm}^{2}$

The following observations were made of an axleload survey on a road.

Axle load (kN)
 Repetitions per day

35-45

800
400

The standard axle-load is 80 kN . Equivalent daily number of repetitions for the standard axle-load are
(A) 450
(B) 480
(C) 800
(D) 1200

A standard company operates a scheduled daily truck service between city P and city Q. One way journey time between these tow cities is 85 hours. A minimum layover time of 5 hours is to be provided at each city. How many trucks are required to provide this service?
(A) 4
(B) 6
(C) 7
(D) 8

A single lane unidirectional highway has a design speed of 65 kmph . The perception-brake-reaction time of drivers is 2.5 seconds and the average length of vehicles is 5 m . The coefficient of longitudinal friction of the pavement is 0.4 . The capacity of this road in term of 'vehicles per hour per lane' is
(A) 1440
(B) 750
(C) 710
(D) 680

A road is having a horizontal curve of 400 m radius on which a super-elevation of 0.07 is provided. The coefficient of lateral friction mobilized on the when a vehicle is travelling at 100 kmph is
(A) 0.07
(B) 0.13
(C) 0.15
(D) 0.4

When the outflow from a storage reservoir is controlled as in a freely operating spillway, the peak of outflow hydrograph occurs at
(A) the point of intersection of the inflow and outflow hydrographs
(B) a point, after the intersection of the inflow and outflow hydrographs
(C) the tail of inflow hydrographs
(D) a point, before the intersection of the inflow and ouflow hydrographs

The intensity of rainfall and time interval of a typical storm are :
Time interval (minutes)

0-10
10-20
20-30
30-40
Intensity of rainfall ($\mathrm{mm} /$ minute)

40-50
0.7

$$
1.1
$$

2.2
1.5

50-60
1.2

60-70 1.3 70-800.9 0.4

The maximum intensity of rainfall for 20 minutes duration of the storm is
(A) $1.5 \mathrm{~mm} /$ minute
(B) $1.85 \mathrm{~mm} /$ minute
(C) $2.2 \mathrm{~mm} /$ minute
(D) $3.7 \mathrm{~mm} /$ minute

On which of the canal systems, R.G. Kennedy, executive engineer in the the Punjab Irrigation Department made his observations for proposing his theory on stable channels ?
(A) K rishna Western Delta canals
(B) Lower Bari Docab canals
(C) Lower Chenab canals
(D) Upper Bari Doab canals

Which one of the following equations represents the downstream profile of Ogee spillway with vertical upstream profile? (x, y) are the coordinates of the point on the downstream profile with origin at the crest of the spillway and H_{d} is the design head.
(A) $\frac{\mathrm{y}}{\mathrm{H}_{\mathrm{d}}}=-0.5\left(\frac{\mathrm{x}}{\mathrm{H}_{\mathrm{d}}}\right)^{1.85}$
(B) $\frac{\mathrm{y}}{\mathrm{H}_{\mathrm{d}}}=-0.5\left(\frac{\mathrm{x}}{\mathrm{H}_{\mathrm{d}}}\right)^{1 / 1.85}$
(C) $\frac{\mathrm{y}}{\mathrm{H}_{\mathrm{d}}}=-2.0\left(\frac{\mathrm{x}}{\mathrm{H}_{\mathrm{d}}}\right)^{1.85}$
(D) $\frac{\mathrm{y}}{\mathrm{H}_{\mathrm{d}}}=-2.0\left(\frac{\mathrm{x}}{\mathrm{H}_{\mathrm{d}}}\right)^{1 / 1.85}$

The culturable commanded area for a distributary is $2 \times 10^{8} \mathrm{~m}^{2}$. The intensity of irrigation for a crop is 40%. If kor water depth and kor period for the crop are 14 cm and 4 weeks, respectively, the peak demand discharge is
(A) $2.63 \mathrm{~m}^{3} / \mathrm{s}$
(B) $4.63 \mathrm{~m}^{3} / \mathrm{s}$
(C) $8.53 \mathrm{~m}^{3} / \mathrm{s}$
(D) $11.58 \mathrm{~m}^{3} / \mathrm{s}$

Uplift pressure at point E and D (figure A) of a straight horizonal floor of negligible thickness with a sheet pile at downstream end are 28% and 20%, respectively. If the sheet pile is at upstream end of the floor (figure B), the uplift pressures at point D_{1} and C_{1} are

Figure A
(A) 68% and 60% respectively
(B) 80% and 72% respectively
(C) 88% and 70% respectively
(D) 100% and zero respectively

A launching apron is to be designed at downstream of a weir for discharge intensity of $6.5 \mathrm{~m}^{3} / \mathrm{s} / \mathrm{m}$. For the design of launching aprons the scour is taken two times of Lacey scour depth. The silt factor of the bed material is unity. If the tailwater depth is 4.4 m , the length of launching apron in the launched position is
(A) $\sqrt{5} \mathrm{~m}$
(B) 4.7 m
(C) 5 m
(D) $5 \sqrt{5} \mathrm{~m}$

Statement For Linked Answer Q. 70 and 71 :

A four hour unit hydrograph of a catchment is triangular in shape with base of 80 hours, the area of the catchment is $720 \mathrm{~km}^{2}$. The base flow and ϕ-index are $30 \mathrm{~m}^{3} / \mathrm{s}$ and $1 \mathrm{~mm} / \mathrm{h}$, respectively. A storm of 4 cm occurs uniformly in 4 hours over the catchment.
The peak discharge of four unity hydrograph is
(A) $40 \mathrm{~m}^{3} / \mathrm{s}$
(B) $50 \mathrm{~m}^{3} / \mathrm{s}$
(C) $60 \mathrm{~m}^{3} / \mathrm{s}$
(D) $70 \mathrm{~m}^{3} / \mathrm{s}$
Q. 71 The peak flood discharge due to the storm is
(A) $210 \mathrm{~m}^{3} / \mathrm{s}$
(B) $230 \mathrm{~m}^{3} / \mathrm{s}$
(C) $260 \mathrm{~m}^{3} / \mathrm{s}$
(D) $720 \mathrm{~m}^{3} / \mathrm{s}$
Q. 72 IS:1343-1980 limit the minimum characteristic strength of pre-stressed concrete for post tensioned work and pretension work as
(A) $25 \mathrm{M} \mathrm{Pa}, 30 \mathrm{M} \mathrm{Pa}$ respectively
(B) $25 \mathrm{MPa}, 35 \mathrm{MPa}$ respectively
(C) 30 M Pa 35 M Pa respectively
(D) $30 \mathrm{M} \mathrm{Pa}, 40 \mathrm{MPa}$ respectively

The partial factor of safety for concrete as per IS:456-2000 is
(A) 1.50
(B) 1.15
(C) 0.87
(D) 0.446

Statement For Linked Answer Q. 78 and 79 :

Assume straight line instead of parabola for stress-strain curve of concrete as given and partial factor of safety as 1.0

A rectangular under-reinforced concrete section of 300 mm width and 500 mm effective depth is reinforced with 3 bars of grade Fe 415 , each of 16 mm diameter. Concrete mis is M 20.
Q. 78 The depth of the neutral axis from the compression fibre is
(A) 76 mm
(B) 81 mm
(C) 87 mm
(D) 100 mm

The depth of the neutral axis obtained as per IS:456-2000 differs from the depth of neutral axis obtained in Q .30 by
(A) 15 mm
(B) 20 mm
(C) 25 mm
(D) 32 mm

The symmetry of stress tensor at a point in the body under equilibrium is obtained from
(A) conserved of mass
(B) force equilibrium equations
(C) moment equilibrium equations
(D) conservation of energy

The components of strain tensor at a point in the plane strain case can be obtained by measuring longitudinal strain in following directions
(A) along any two arbitrary directions
(B) along any three arbitrary directions
(C) along two mutually orthogonal directions
(D) along any arbitrary direction

If principal stresses in a two-dimensional case are - 10 MPa and 20 MPa respectively, then maximum shear stress at the point is
(A) 10 MPa
(B) 15 MPa
(C) 20 MPa
(D) 30 MPa

The bending moment diagram for a beam is given below :

The shear force at sections aa' and bb^{\prime} respectively are of the magnitude
(A) $100 \mathrm{kN}, 150 \mathrm{kN}$
(B) zero, 100 kN
(C) zero, 50 kN
(D) $100 \mathrm{kN}, 100 \mathrm{kN}$

A circular shaft shown in the figure is subjected to torsion T at two point A and B. The torsional rigidity of portions $C A$ and $B D$ is $G J_{1}$ and that of portion $A B$ is $G J{ }_{2}$. The rotations of shaft at points A and B are θ_{1} and θ_{2}. The rotation θ_{1} is

(A) $\frac{\mathrm{TL}}{\mathrm{GJ}{ }_{1}+G J_{2}}$
(B) $\frac{\mathrm{TL}}{\mathrm{Gj}}{ }_{1}$
(C) $\frac{\mathrm{TL}}{\mathrm{GJ}}{ }_{2}$
(D) $\frac{\mathrm{TL}}{\mathrm{GJ}-\mathrm{GJ} 2}$

For a linear elastic frame, if stiffness matrix is doubled with respect to the existing stiffness matrix, the deflection of the resulting frame will be
(A) twice the existing value
(B) half the existing value
(C) the same as existing value
(D) indeterminate value

Considering beam as axially rigid, the degree of freedom of a plane frame shown below is

(A) 9
(B) 8
(C) 7
(D) 6

Match List-I with List-II and select the correct answer using the codes given below the lists:

	List-I	List-II	
a. Slope deflection method	1.	Force method	
b. Moment distribution method	2.	Displacement method	
c.	Method of three moments		
d.	Castigliano's second theorem		

Codes:

	a	b	c	d
(A)	1	2	1	2
(B)	1	1	2	2
(C)	2	2	1	1
(D)	2	1	2	1

All members of the frame shown below have the same flexural rigidity EI and length L. If a moment M is applied at joint B, the rotation of the joint is

(A) $\frac{\mathrm{ML}}{12 \mathrm{ET}}$
(B) $\frac{M L}{11 E T}$
(C) $\frac{M L}{8 E T}$
(D) $\frac{M L}{7 E T}$

Common Data For Questions. 89 \& 90 :

A truss is shown in the figure. Members are of equal cross section A and same modulus of elasticity E . A vertical force P is applied at point C .

$2 L$

Force in the member $A B$ of the truss is
(A) $\frac{\mathrm{P}}{\sqrt{2}}$
(B) $\frac{\mathrm{P}}{\sqrt{3}}$
(C) $\frac{\mathrm{P}}{2}$
(D) P

Deflection of the point C is
(A) $\left(\frac{2 \sqrt{2}+1}{2}\right) \frac{\mathrm{PL}}{\mathrm{EA}}$
(B) $\sqrt{2} \frac{\mathrm{PL}}{\mathrm{EA}}$
(C) $(2 \sqrt{2}+1) \frac{\mathrm{PL}}{\mathrm{EA}}$
(D) $(\sqrt{2}+1) \frac{P L}{E A}$

ANSWER KEY

$\underline{9005}$									
1	2	3	4	5	6	7	8	9	10
(C)	(D)	(C)	(D)	(B)	(A)	(A)	(C)	(D)	(D)
11	12	13	14	15	16	17	18	19	20
(A)	(D)	(A)	(B)	(A)	(C)	(B)	(B)	(C)	(A)
21	22	23	24	25	26	27	28	29	30
(A)	(D)	(B)	(A)	(D)	(A)	(C)	(C)	(C)	(D)
31	32	33	34	35	36	37	38	39	40
(C)	(A)	(C)	(B)	(D)	(A)	(D)	(C)	(A)	(B)
41	42	43	44	45	46	47	48	49	50
(A)	(C)	(D)	(D)	(C)	(B)	(B)	(B)	(A)	(D)
51	52	53	54	55	56	57	58	59	60
(C)	(B)	(B)	(C)	(B)	(A)	(C)	(B)	(A)	(D)
61	62	63	64	65	66	67	68	69	70
(C)	(B)	(A)	(B)	(D)	(A)	(B)	(B)	(C)	(B)
71	72	73	74	75	76	77	78	79	80
(A)	(D)	(A)	(A)	(A)	(A)	(D)	(D)	(C)	(C)
81	82	83	84	85	86	87	88	89	90
(B)	(B)	(C)	(A)	(C)	(D)	(C)	(B)	(C)	(C)

