2005

- **Q. 1** The permissible stress in axial tension σ_{st} in steel member on the net effective area of the section shall not exceed (f_y is the yield stress) (A) 0.80 f_y (B) 0.75 f_y
 - (C) 0.60 f_y (D) 0.50 f_y
- Q. 2

An unstiffened web I-section is fabricated from a 10 mm thick plate by fillet welding as shown in the figure. If yield stress of steel is 250 MPa, the maximum shear load that section can take is

Q. 3

A fillet-welded joint of 6mm size is shown in the figure. The welded surfaces meet at 60-90 degree and permissible stress in the filled weld is 108 MPa. The safe load that can be transmitted by the joint is

Q. 4

- Which one of the following is NOT correct for steel sections as per IS:800-1984 ? (A) The maximum bending stress in tension or in compression in extreme fibre
- calculated on the effective section of a beam shall not exceed 0.66 f_y . (P) The bearing stress in any part of a beam when calculated on the net of
- (B) The bearing stress in any part of a beam when calculated on the net area shall not exceed 0.75 f_y .
- (C) The direct stress in compression on the gross sectional area of axially loaded compression member shall not exceed 0.6 f_{y}
- (D) None of the above

Q. 5	A cantilever beam of length <i>L</i> , width <i>b</i> at vertical load at the tip. If yielding starts (A) 2.0 P (C) 1.2 P	nd depth <i>d</i> is loaded with a concentrated at a load <i>P</i> , the collapse load shall be (B) 1.5 P (D) P
Q. 6	Consider the matrices $X_{(4 \times 3)}$, $Y_{(4 \times 3)}$ and R The order of $[P(X^T Y)^{-1}P^T]^T$ will be (A) (2×2) (C) (4×3)	$P_{(2 \times 3)}$. (B) (3 × 3) (D) (3 × 4)
Q. 7	Consider a non-homogeneous system mathematically an over-determined system (A) consistent having a unique solution (B) consistent having a unique solution (C) inconsistent having a unique solution (D) inconsistent having no solution	em. Such a system will be
Q. 8	Which one of the following is NOT true (A) $\frac{Z_1}{Z_2} = \frac{Z_1 \bar{Z}_2}{ Z_2 ^2}$ (B) $ Z_1 + Z_2 \le Z_1 + Z_2 $ (C) $ Z_1 - Z_2 \le Z_1 - Z_2 $ (D) $ Z_1 + Z_2 ^2 + Z_1 - Z_2 ^2 = Z_1 ^2 + 2 Z_2 ^2$	for complex number Z_1 and Z_2 ?
Q. 9	Which one of the following statement is(A) The measure of skewness is depended(B) In a symmetric distribution, the value same(C) In a positively skewed distribution :(D) In a negatively skewed distribution :	ent upon the amount of dispersion ues of mean, mode and median are the mean > median > mode
Q. 10	 (λ_i, X_i) be an eigen-pair of an eigen value real matrix A. Let be a (n × n) unit matrix is NOT correct ? (A) For a homogeneous n × n system of a nontrivial solution, the rank of (A) 	f linear equations, $(A - \lambda) x = 0$ having
Q. 11	Transformation to linear form by s $\frac{dy}{dt} + p(t) y = q(t) y^{n}; n > 0 \text{ will be}$ (A) $\frac{dv}{dt} + (1 - n) pv = (1 - n) q$ (C) $\frac{dv}{dt} + (1 + n) pv = (1 - n) q$	ubstituting $v = y^{1-n}$ of the equation (B) $\frac{dv}{dt} + (1-n) pv = (1-n) q$ (D) $\frac{dv}{dt} + (1+n) pv = (1+n) q$

Q. 12

Q. 13

Q. 14

Q. 15

Q. 16

	A rail engine accelerates from its station distance of 280 m. According to the Mea certain time during acceleration must re- (A) 0	an Value Theorem, the speedometer at a	
	(C) 75 kmph	(D) 126 kmph	
	The solution of $\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + 17y = 0$; y(-	
	$0 < x < \frac{\pi}{4}$ is given by		
	(A) $e^{-x}\left(\cos 4x + \frac{1}{4}\sin 4x\right)$	(B) $e^x \left(\cos 4x - \frac{1}{4} \sin 4x \right)$	
	(C) $e^{-4x}\left(\cos x - \frac{1}{4}\sin x\right)$	(D) $e^{-4x} \left(\cos 4x - \frac{1}{4} \sin 4x \right)$	
	Value of the integral $\oint_c (xydy - y^2 dx)$, wh	ere , c is the square cut from the first	
	quadrant by the line $x = 1$ and $y = 1$ will line integral into double integral)		
	(A) $\frac{1}{2}$	(B) 1	
	(C) $\frac{3}{2}$ –	(B) 1 (D) $\frac{5}{3}$	
	Consider the likely applicability of Cau following integral counter clockwise arou		
	$I = \oint \sec z dz,$		
	z being a complex variable. The value of I will be (A) $I = 0$: singularities set = ϕ		
	(B) $I, 0, = \{\pm \frac{2n+1}{2}\}$	$\pi.\underline{n} = 0.1.2$	
	(C) $I = \pi/2$: singularities set = { $\pm n\pi$;	n = 0, 1, 2	
	(D) None of above		
Statem	ent For Linked Answer Q. 16 and 17 :		
	Give $a > 0$, we wish to calculate its recipr Method for $f(x) = 0$.		

The Newton Raphson algorithm for the function will be
(A)
$$X_{k+1} = \frac{1}{2} \left(X_k + \frac{a}{X_k} \right)$$
(B) $X_{k+1} = \left(X_k + \frac{a}{2} X_k^2 \right)$
(C) $X_{k+1} = 2X_k = aX_k^2$
(D) $X_{k+1} = X_k - \frac{a}{2} X_k^2$

For a = 7 and starting with $x_0 = 0.2$, the first two iterations will be Q. 17 (A) 0.11, 0.1299

- (B) 0.12,0.1392
- (C) 0.12, 0.1416
- (D) 0.13, 0.1428

2005

Q. 18	(A) t (B) t (C) t	al Kjeldahl nitrogen is a measure of total organic nitrogen total organic and ammonia nitrogen total ammonia nitrogen total inorganic and ammonia nitrogen				
Q. 19	(A) 1(B) 1(C) 1	 1 TCU is equivalent to the color produced by (A) 1 mg/L of chloroplatinate ion (B) 1 mg/L of platinum ion (C) 1 mg/L platinum in form of choloroplatinate ion (D) 1 mg/L of organo-chloroplatinate ion 				
Q. 20	(A) <i>A</i>(B) <i>A</i>(C) <i>A</i>	U is equivalent to the color produced by mg/L of chloroplatinate ion mg/L platinum in form of choloroplatinate ion mg/L platinum in form of choloroplatinate ion mg/L of organo-chloroplatinate ion robic environment, nitrosomonas convert VH_3 to NO_2 VO_2^- to NO_3^- VH_3 to N_2O VO_2^- to HNO_3 mg sludge refers to having V/M < 0.3/d .3/d < F/M < 0.6/d				
Q. 21	(A) 1 (B) ((C) 1	ing sludge refers to having F/M<0.3/d 0.3/d <f d<br="" m<0.6="">F/M=zero F/M>0.6/d</f>				
Q. 22	(A) 1(B) 9(C) 8	mato juice is having a pH of 4.1, the hydrogen ion concentration will be 10.94×10^{-5} mol/L 0.94×10^{-5} mol/L 3.94×10^{-6} mol/L 7.94×10^{-5} mol/L				
Q. 23	some		h Lis	ste water and List-II contains list of t-I with List-II and select the correct :		
		List-I		List-II		
	a.	Suspended solids concentration	1.	BOD		
	b.	Metabolism of biodegradable organics	2.	MPN		
	с.	Bacterial concentration	3.	Jar test		
	d.	Coagulant dose	4.	Turbidity		
	Code	PS:	1			
		a b c d				
	(A)					
	(B)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
	(C) (D)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				

Q. 24 Match List-I with List-II and select the correct answer using the codes given below the lists :

	List-I		List-II
a.	Thickening of sludge	1.	Decrease in volume of sludge by chemical oxidation
b.	Stabilization of sludge	2.	Separation of water by heat or chemical treatment
C.	Conditioning of sludge	3.	Digestion of sludge
d.	Reduction of sludge	4.	Separation of water by floatation or gravity
Codes	· ·	•	0
	a b c d		
(A)	4 3 1 2		

(A)	4	3	1	2
(B)	3	2	4	1
(C)	4	3	2	1
(D)	2	1	3	4

Q. 25

Q. 26

A circular primary clarifier processes an average flow of 5005 m³/d of municipal waste water. The overflow rate is $35 \text{ m}^3/\text{m}^2/\text{d}$. The diameter of clarifier shall be (A) 10.5 m (B) 11.5 m

(C) 12.5 m

Match List-I with List-II and select the correct answer using the codes given below the lists:

	List-I		List-II
a.	Release value	1.	Reduce high inlet pressure to lower outlet pressure
b.	Check value	2.	Limit the flow of water to single direction
с.	Gate value	3.	Remove air from the pipeline
d.	Pilot value	4.	Stopping the flow of water in the pipeline
Codes	:		
	- L - J		

(D) 13.5

	а	b	С	d
(A)	3	2	4	1
(B)	4	2	1	3
(C)	3	4	2	1
(D)	1	2	4	3

Q. 27

In a certain situation, waste water discharged into a river mixer with the river water instantaneously and completely. Following is the data available : Waste water DO = 2.00 mg/L

Discharge rate = $1.10 \text{ m}^3/\text{s}$ River water DO = 8.3 mg/LFlow rate = $8.70 \text{ m}^3/\text{s}$ Temperature = 20°C Initial amount of DO in the mixture of waste and river shall be (A) 5.3 mg/L (B) 6.5 mg/L

(C) 7.6 mg/L (D) 8.4 mg/L

Statement For Linked Answer Q. 28 and 29 :

A city is going to install the rapid sand filter the sedimentation tanks. Use the following data.

	Use the following data. Design loading rate to the filter Design flow rate Surface area per filter box	- $200 \text{m}^3/\text{m}^2\text{d}$ - $0.5 \text{m}^3/\text{s}$ - 50m^2
Q. 28	The surface area required for the rapid (A) 210m ² (C) 216m ²	sand filter will be (B) 215m ² (D) 218m ²
Q. 29	The number of filters required shall be (A) 3 (C) 6	 (B) 215m² (D) 218m² (B) 4 (D) 8
Q. 30	An inert tracer is injected continuouslyThe locus of locations of all tracer parti(A) Streamline(C) Streamtube	from a point in an unsteady flow field.
Q. 31	<u>e</u>	of a Venturimeter, placed at 45° to the er is turned to horizontal position, the
	(A) zero	(B) $\frac{11}{\sqrt{2}}$ cm
	(C) 11 cm	(D) $11\sqrt{2}$ cm
Q. 32	A horizontal bed channel is followed by figure. The gradually-varied profiles over ∇	y a steep bed channel as shown in the r the horizontal and sleep beds are
	Horizontal bed	
	 (A) H₂ and S₂ respectively (B) H₂ and S₁ respectively (C) H₃ and S₂ respectively (D) H₃ and S₁ respectively 	
Q. 33	A stream function is given by : $\Psi = 2x^2y + (x+1)y^2$ The flow rate across a line joining point (A) 0.4 units (C) 4 units	s A(3,0) and B(0,2) is (B) 1.1 units (D) 5 units

Q. 34 The circulation ' Γ ' around a circle of radius 2 units for the velocity field u = 2x + 3y and v = -2y is

(A) -6π unit	(B) -12π units
(C) -18π units	(D) -24π units

A tank and a deflector are placed on a frictionless trolley. The tank issues water jet (mass density of water = 1000 kg/m^3), which strikes the deflector and turns by 45°. If the velocity of jet leaving the deflector is 4 m/s and discharge is 0.1 m³/s, the force recorded by the spring will be

Q. 36

Q. 35

Cross-section of an object (having same section normal to the paper) submerged into a fluid consists of a square of sides 2 m and triangle as shown in the figure. The object is hinged at point P that is one meter below the fluid free surface. If the object is to be kept in the position as shown in the figure, the value of 'X should be

Q. 37

Critical depth at a section of a rectangular channel is 1.5 m. The specific energy at that section is

(A) 0.75 m	(B) 1.0 m
(C) 1.5 m	(D) 2.25 m

Q. 38

A partially open sluice gate discharge water into a rectangular channel. The tail water depth in the channel is 3 m and Froude number is $\frac{1}{2\sqrt{2}}$. If a free hydraulic jump is to be formed at downstream of the sluice gate after the vena contract a of the jet coming out from the sluice gate, the sluice gate opening should be (coefficient of contraction $C_c = 0.9$) (A) 0.3 m (B) 0.4 m (C) 0.69 m (D) 0.9 m

Q. 39	A triangular irrigation lined canal carries a discharge of 25 m ³ /s at bed slope $=\frac{1}{6000}$. If the side slopes of the canal are 1:1 and Manning's coefficient is 0.018,
	the central depth of flow is equal to (A) 1.98 m
	(B) 3,62 m
	(C) 4.91 m
	(D) 5.61 m
Q. 40	 (D) 5.61 m Root time method is used to determine (A) <i>L</i>, time factor (B) <i>C_v</i>, coefficient of consolidation (C) <i>a_v</i>, coefficient of compressibility (D) <i>m_v</i>, coefficient of volume compressibility
	(B) C_{ν} , coefficient of consolidation
	(C) a_v , coefficient of compressibility
	(D) m_v , coefficient of volume compressibility
Q. 41	Negative skin friction in a soil is considered when the pile is constructed through a
	(A) fill material (B) dense coarse sand
	(C) over consolidated stiff clay (D) dense fine sand
Q. 42	There are two footings resting on the grounds surface. One footing is square of dimension B . The other is strip footing of width B . Both of them are subjected to a loading intensity of q . The pressure intensity at any depth below the base of the footing along the centre line would be (A) equal in both footings
	(B) large for square footing and small for strip footing
	(C) large for strip footing and small for square footing
	(D) more for strip footing at shallow depth ($\leq B$) and more for square footing at large depth (> <i>B</i>)
Q. 43	 A clayey soil has a maximum dry density of 16 kN/m³ and optimum moisture content of 12%. A contractor during the construction of core of an earth dam obtained the dry density 15.2 kN/m³ and water content 11%. This construction is acceptable because (A) the density is less than the maximum dry density and water content is on dry side of optimum
	(B) the compaction density is very low and water content is less than 12%
	(C) the compaction is done on the dry side of the optimum
	(D) both the dry density and water content of the compacted soil are within the desirable limits
Q. 44	In a constant head parameter with cross section area of 10 cm^2 , when the flow was taking place under a hydraulic gradient of 0.5, the amount of water collected in 60 seconds is 600 cc. The permeability of the soil is (A) 0.002 cm/s
	(B) 0.02 cm/s
	(C) 0.2 cm/s
	(D) 2.0 cm/s

Q. 45	apart in the direction of flow,	rated into a confined aquifer and located 1.5 km indicate head of 45 m and 20 m. If the coefficient is 30 m/day and porosity is 0.25, the time of travel ll to another is
Q. 46	 was 10 m, 15 m and 8 m durespectively of a particular year. The density of water is 10 km the river bed during these more (A) 300 kN/m² in February, 3 (B) 100 kN/m² in February, 1 (C) 200 kN/m² in February, 2 (C) 2	rel does not change and the depth of water in river ring the months of February, July and December ar. The average bulk density of the soil is 20 kN/m ³ V/m ³ . The effective stress at a depth of 10 m below nths would be 250 kN/m ² July and 320 kN/m ² in December 00 kN/m ² July and 100 kN/m ² in December 250 kN/m ² July and 180 kN/m ² in December 250 kN/m ² July and 280 kN/m ² in December
Q. 47	of 100 kN/m^2 under drained	ucted on a sand specimen at a confining pressure conditions, resulted in a deviator stress $(\sigma_1 - \sigma_3)$ at gle of shearing resistance of the soil would be (B) 19.47° (D) 30°
Q. 48	capillary action) of bulk dens . The change in magnitude c	s supporting a saturated sand (saturated due to ity 18 kN/m ³ and angle of shearing resistance 30° f active earth pressure at the base due to rise in base of the footing to the ground surface shall
Q. 49	in a sand deposit having the a	8.40° for submerged slope .05° for submerged slope
Q. 50	bearing capacity (shear) was 1 kN/m². Due to important of t	designed for a total settlement of 40 mm. The safe 150 kN/m ² and safe allowable soil pressure was 100 he structure, now the footing is to be redesigned for he new width of the footing will be (B) 8 m (D) 12.8 m

Q. 51	During the subsurface investigations for design of foundations, a standard penetration test was conducted at 4.5 m below the ground surface. The record of number of blow is given below :							
	Penetration depth (cm)	Number of blows	7					
	0 - 7.5	3	-					
	7.5 - 15	3	-					
	15 - 22.5	6						
	22.5 - 30	6						
	30 - 37.5	8						
	37.5 - 45							
	Assuming the water table a for overburden as 1.0, the co (A) 18	8						
	(C) 21	(D) 33						
Q. 52	A soil mass contains 40% classified as (A) silty sandy gravel havin (B) silty gravelly sand havin (C) gravelly silty sand havin (D) gravelly silty sand and i	g coefficient of uniformly ng coefficient of uniformly ng coefficient of uniformly	less than 60. equal to 10. greater than 60.					
Q. 53	A saturated soil mass has a The bulk density and dry de (A) 12 kN/m ³ and 20 kN/n (B) 22 kN/m ³ and 20 kN/n (C) 19.8 kN/m ³ and 19.8 kl (D) 23.2 kN/m ³ and 19.8 kl	ensity of this soil are n ³ respectively n ³ respectively N/m ³ respectively	nd a water content of 10%.					
Q. 54	The length of summit curve (A) allowable rate of change (B) coefficient of lateral fric (C) required stopping sight (D) required overtaking sigh	e of centrifugal acceleration ction distance						
Q. 55	Pradhan Mantri Gram Sada to provide rural connectivity habitation in plan areas of p (A) 2005 (C) 2010	with all-weather roads. It	t is proposed to connect the					
Q. 56	List-I contains some prope Tests conducted on bitumen corresponding test and selec lists :	to determine the properti	ies. Match the property the					

			List-I		List-II			
a.	Resist	ance to	o flow	1.	Ductility test			
b.	Abilit	y to de	eform under load	2.	Penetration test			
c.	Safety	7		3.	Flash and fire point test			
Code		,						
(Λ)	а 2	b 1	с 3					
(A) (B)	2 2							
(C)	ĩ	2	3					
(D)	3	1	2					
Bitu	minous	concre	ete is a mix comp	orising o	f			
(A) f	ine agg	regate,	, filler and bitum	ien				
(B) f	ine agg	gregate	and bitumen					
			nte, fine aggregat		of and bitumen			
(D) (coarse a	ıggrega	te, filler and bit	umen				
Whe Warn Warn Warn Frict Frict The (A) 4 (C) 4 (D) 4 (D) 4	el load bing str bing str bing str ional st ional st ional st most cn 40 kg/c 42 kg/c 44 kg/c 45 kg/c	stress at ress at ress at ress at tress at tress du tress du tres	due to edge load corner region du corner region du edge region durin edge region durin uring summer uring winter value for this pay	ing ring sum ng sum ng sum ng sum vement i	n axle-load survey on a road.			
	de load			tions pe				
	35-45	ó		800 400				
	standaı lard ax			Equivale	ent daily number of repetitions for the			
				(]	->			
(A) 4				`	B) 480			
(A) = 4 $(C) = 8$	300				B) 480 D) 1200			
(C) 8 A sta city layov requi	andard Q. One ver time ired to	e way jo e of 5	ourney time betw	(I neduled ween the	D) 1200 daily truck service between city P and ese tow cities is 85 hours. A minimum			
(C) 8 A sta city 9 layov	andard Q. One ver time ired to	e way jo e of 5	ourney time betw hours is to be	(I neduled veen the provideo				

Q. 57

- Q. 58

Q. 59

Q. 60

(A) 4	(B) 6
(C) 7	(D) 8

Q. 61	perception-brake-reaction time of driver	has a design speed of 65 kmph. The s is 2.5 seconds and the average length of idinal friction of the pavement is 0.4. The s per hour per lane' is (B) 750 (D) 680
Q. 62	õ	400 m radius on which a super-elevation ateral friction mobilized on the when a (B) 0.13 (D) 0.4
Q. 63	When the outflow from a storage reserves spillway, the peak of outflow hydrograph (A) the point of intersection of the inflow (B) a point, after the intersection of the (C) the tail of inflow hydrographs (D) a point, before the intersection of th	w and outflow hydrographs e inflow and outflow hydrographs
Q. 64	The intensity of rainfall and time intervalTime intervalIntensity of(minutes)(mm/min) $0-10$ 0.7 $10-20$ 1.1 $20-30$ 2.2 $30-40$ 1.5 $40-50$ 1.2 $50-60$ 1.3 $60-70$ 0.9 $70-80$ 0.4	rainfall
	The maximum intensity of rainfall for 2 (A) 1.5 mm/minute (C) 2.2 mm/minute	0 minutes duration of the storm is (B) 1.85 mm/minute (D) 3.7 mm/minute
Q. 65	5	Kennedy, executive engineer in the the observations for proposing his theory on (B) Lower Bari Docab canals (D) Upper Bari Doab canals
Q. 66	spillway with vertical upstream profile	epresents the downstream profile of Ogee ? (<i>x</i> , <i>y</i>) are the coordinates of the point at the crest of the spillway and H_d is the (B) $\frac{Y}{H_d} = -0.5 \left(\frac{X}{H_d}\right)^{1/1.85}$ (D) $\frac{Y}{H_d} = -2.0 \left(\frac{X}{H_d}\right)^{1/1.85}$

2005

Q. 67 The culturable commanded area for a distributary is $2 \times 10^8 \text{ m}^2$. The intensity of irrigation for a crop is 40%. If kor water depth and kor period for the crop are 14 cm and 4 weeks, respectively, the peak demand discharge is (A) 2.63 m³/s (B) 4.63 m³/s

Q. 68 Uplift pressure at point E and D (figure A) of a straight horizonal floor of negligible thickness with a sheet pile at downstream end are 28% and 20%, respectively. If the sheet pile is at upstream end of the floor (figure B), the uplift pressures at point D_1 and C_1 are

- (A) 68% and 60% respectively
- (C) 88% and 70% respectively

(B) 80% and 72% respectively(D) 100% and zero respectively

Q. 69

A launching apron is to be designed at downstream of a weir for discharge intensity of 6.5 m³/s/m. For the design of launching aprons the scour is taken two times of Lacey scour depth. The silt factor of the bed material is unity. If the tailwater depth is 4.4 m, the length of launching apron in the launched position is (A) $\sqrt{5}$ m (B) 4.7 m

(C) 5 m

(D) $5\sqrt{5}$ m

Statement For Linked Answer Q. 70 and 71 :

A four hour unit hydrograph of a catchment is triangular in shape with base of 80 hours, the area of the catchment is 720 km². The base flow and ϕ -index are 30 m³/s and 1 mm/h, respectively. A storm of 4 cm occurs uniformly in 4 hours over the catchment.

Q. 70	The peak discharge of four u	The peak discharge of four unity hydrograph is				
	(A) 40 m^3/s	(B) 50 m^3/s				
	(C) 60 m^3/s	(D) 70 m^3/s				
Q. 71	The peak flood discharge due to the storm is					
	(A) 210 m^3/s	(B) 230 m^3/s				
	(C) 260 m^3/s	(D) 720 m^3/s				
Q. 72	IS:1343-1980 limit the minir for post tensioned work and	num characteristic strength of pre-stressed concrete pretension work as				

- (A) 25 MPa, 30 MPa respectively (B) 25 MPa, 35 MPa respectively
 - (C) 30 MPa 35 MPa respectively (D) 30 MPa, 40 MPa respectively

Q. 73	The partial factor of safety for concrete (A) 1.50	as per IS:456-2000 is (B) 1.15		
	(C) 0.87	(D) 0.446		
Q. 74	bars of grade Fe-500, each of 20 mm dia	$m \times 400$ mm is reinforced with five steel ameter. Concrete mis is M 30. Axial load ccentricity as per IS:456-2000 using limit (B) 1805.30		
	(C) 1806.40	(D) 1903.7		
Q. 75		ction of 200 mm × 400 mm is prestressed mm. The maximum compressive stress in (B) 7.5 N/mm ² (D) 2.5 N/mm ²		
Q. 76	The flexural strength of M30 concrete a (A) 3.83 MPa (C) 21.23 MPa	s per IS:456-2000 is (B) 5.47 MPa (D) 30.0 MPa		
Q. 77	of <i>X</i> number of specimens. These spec strength of these <i>X</i> specimen is conside	e strength of concrete, one sample consists imens are tested at 28 days and average red as test result of the sample, provided of specimens is not more than $\pm Y$ per s of X and Y as per IS:456-2000 are		

- (B) 3 and 10 respectively
- (C) 4 and 15 respectively
- (D) 3 and 15 respectively

Statement For Linked Answer Q. 78 and 79 :

Assume straight line instead of parabola for stress-strain curve of concrete as given and partial factor of safety as 1.0

A rectangular under-reinforced concrete section of 300 mm width and 500 mm effective depth is reinforced with 3 bars of grade Fe-415, each of 16 mm diameter. Concrete mis is M20.

Q. 78	The depth of the neutral axis from	m the compression fibre is
	(A) 76 mm	(B) 81 mm
	(C) 87 mm	(D) 100 mm

Q. 79	The depth of the neutral axis obtained a of neutral axis obtained in Q.30 by	as per IS:456-2000 differs from the depth
	(A) 15 mm	(B) 20 mm
	(C) 25 mm	(D) 32 mm
Q. 80	The symmetry of stress tensor at a point from	in the body under equilibrium is obtained
	(A) conserved of mass	(B) force equilibrium equations
	(C) moment equilibrium equations	(D) conservation of energy
Q. 81	The components of strain tensor at a obtained by measuring longitudinal strai (A) along any two arbitrary directions (B) along any three arbitrary directions (C) along two mutually orthogonal direct (D) along any arbitrary direction	
Q. 82	If principal stresses in a two-dimension respectively, then maximum shear stress (A) 10 MPa (C) 20 MPa	onal case are -10 MPa and 20 MPa at the point is (B) 15 MPa (D) 30 MPa
0.83	The bending moment diagram for a beau	– m is given below :

The shear force at sections aa' and bb' respectively are of the magnitude (A) 100 kN, 150 kN

- (B) zero, 100 kN
- (C) zero, 50 kN
- (D) 100 kN, 100 kN

Q. 84

A circular shaft shown in the figure is subjected to torsion T at two point A and B. The torsional rigidity of portions CA and BD is GJ_1 and that of portion AB is GJ_2 . The rotations of shaft at points A and B are θ_1 and θ_2 . The rotation θ_1 is

(A)
$$\frac{TL}{GJ_1 + GJ_2}$$
 (B) $\frac{TL}{GJ_1}$
(C) $\frac{TL}{GJ_2}$ (D) $\frac{TL}{GJ_1 - GJ_2}$

Q. 85

For a linear elastic frame, if stiffness matrix is doubled with respect to the existing stiffness matrix, the deflection of the resulting frame will be (A) twice the existing value (B) half the existing value

(C) the same as existing value

2

1

1

2

1

1

(C)

(D)

2

2

(D) indeterminate value

Q. 86

Considering beam as axially rigid, the degree of freedom of a plane frame shown below is

Q. 87

Match List-I with List-II and select the correct answer using the codes given below the lists :

			List	-I	List-II				
a.	Slop	e defle	ction m	ethod	1.	Force method			
b.	Mor	nent di	stributi	on method	2.	Displacement method			
с.	c. Method of three moments								
d.	d. Castigliano's second theorem								
Code	Codes :								
	а	b	С	d					
(A)	1	2	1	2					
(B)									

Q. 88

All members of the frame shown below have the same flexural rigidity EI and length L. If a moment M is applied at joint B, the rotation of the joint is

Common Data For Questions. 89 & 90 :

A truss is shown in the figure. Members are of equal cross section A and same modulus of elasticity E. A vertical force P is applied at point C.

Downloaded From : www.EasyEngineering.net

ANSWER KEI									
<u>2005</u>									
1	2	3	4	5	6	7	8	9	10
(C)	(D)	(C)	(D)	(B)	(A)	(A)	(C)	(D)	(D)
11	12	13	14	15	16	17	18	19	20
(A)	(D)	(A)	(B)	(A)	(C)	(B)	(B)	(C)	(A)
21	22	23	24	25	26	27	28	29	30
(A)	(D)	(B)	(A)	(D)	(A)	(C)	(C)	(C)	(D)
31	32	33	34	35	36	37	38	39	40
(C)	(A)	(C)	(B)	(D)	(A)	(D)	(C)	(A)	(B)
41	42	43	44	45	46	47	48	49	50
(A)	(C)	(D)	(D)	(C)	(B)	(B)	(B)	(A)	(D)
51	52	53	54	55	56	57	58	59	60
(C)	(B)	(B)	(C)	(B)	(A)	(C)	(B)	(A)	(D)
61	62	63	64	65	66	67	68	69	70
(C)	(B)	(A)	(B)	(D)	(A)	(B)	(B)	(C)	(B)
71	72	73	74	75	76	77	78	79	80
(A)	(D)	(A)	(A)	(A)	(A)	(D)	(D)	(C)	(C)
81	82	83	84	85	86	87	88	89	90
(B)	(B)	(C)	(A)	(C)	(D)	(C)	(B)	(C)	(C)
(B) (C) (A) (C) (D) (C) (B) (C) (C)									